Skip to main content
Log in

Simulating Weyl points and nodal loops in an optical superlattice

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme to simulate Weyl points and nodal loops with ultracold atoms in an optical lattice that is subjected to realizable synthetic magnetic field and synthetic dimension. We show that a Hofstadter-like Hamiltonian with a cyclically parameterized on-site energy term can be realized in a tunable two-dimensional optical superlattice, based on the laser-assisted atomic tunneling method. This model effectively describes a three-dimensional periodic lattice system under magnetic fluxes, where a synthetic dimension is encoded by a cyclical phase of the optical lattice potential. For different atomic hopping configurations, the single-particle bands are demonstrated to, respectively, exhibit Weyl points and nodal loops in the extended three-dimensional Brillouin zone. Furthermore, we illustrate that the mimicked Weyl points and nodal loops can be experimentally detected by measuring the atomic transfer fraction in Bloch–Zener oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lin, Y.-J., Compton, R.L., Jiménez-García, K., Porto, J.V., Spielman, I.B.: Synthetic magnetic fields for ultracold neutral atoms. Nature (London) 462, 628 (2009)

    Article  ADS  Google Scholar 

  2. Lin, Y.-J., Jiménez-García, K., Spielman, I.B.: A spin–orbit coupled Bose–Einstein condensate. Nature (London) 471, 83 (2011)

    Article  ADS  Google Scholar 

  3. Wang, P., Yu, Z.-Q., Fu, Z., Miao, J., Huang, L., Chai, S., Zhai, H., Zhang, J.: Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012)

    Article  ADS  Google Scholar 

  4. Cheuk, L.W., Sommer, A.T., Hadzibabic, Z., Yefsah, T., Bakr, W.S., Zwierlein, M.W.: Spin-injection spectroscopy of a spin–orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012)

    Article  ADS  Google Scholar 

  5. Dalibard, J., Gerbier, F., Juzeliūnas, G., Öhberg, P.: Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523 (2011)

    Article  ADS  Google Scholar 

  6. Lewenstein, M., Sanpera, A., Ahufinger, V., Damski, B., De, A.S., Sen, U.: Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243 (2007)

    Article  ADS  Google Scholar 

  7. Zhang, D.-W., Wang, Z.D., Zhu, S.-L.: Relativistic quantum effects of Dirac particles simulated by ultracold atoms. Front. Phys. 7, 31 (2012)

    Article  Google Scholar 

  8. Goldman, N., Juzeliūnas, G., Öhberg, P., Spielman, I.B.: Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014)

    Article  ADS  Google Scholar 

  9. Zhai, H.: Degenerate quantum gases with spin–orbit coupling: a review. Rep. Prog. Phys. 78, 026001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  11. Qi, X.-L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  12. Wan, X., Turner, A.M., Vishwannath, A., Savrasov, S.Y.: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  13. Burkov, A.A., Hook, M.D., Balents, L.: Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011)

    Article  ADS  Google Scholar 

  14. Volovik, G.E.: The Universe in a Helium Droplet. Clarendon, Oxford (2003)

    MATH  Google Scholar 

  15. Delplace, P., Li, J., Carpentier, D.: Topological Weyl semi-metal from a lattice model. Europhys. Lett. 97, 67004 (2012)

    Article  ADS  Google Scholar 

  16. Xu, S.-Y., Belopolski, I., Alidoust, N., Neupane, M., Zhang, C., Sankar, R., Huang, S.-M., Lee, C.-C., Chang, G., Wang, B., Bian, G., Zheng, H., Sanchez, D.S., Chou, F., Lin, H., Jia, S., Hasan, M.Z.: Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613 (2015)

    Article  ADS  Google Scholar 

  17. Lv, B.Q., Weng, H.M., Fu, B.B., Wang, X.P., Miao, H., Ma, J., Richard, P., Huang, X.C., Zhao, L.X., Chen, G.F., Fang, Z., Dai, X., Qian, T., Ding, H.: Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015)

    Google Scholar 

  18. Inoue, H., Gyenis, A., Wang, Z., Li, J., Oh, S.W., Jiang, S., Ni, N., Bernevig, B.A., Yazdani, A.: Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184 (2016)

    Article  ADS  Google Scholar 

  19. Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G., Esslinger, T.: Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature (London) 483, 302 (2012)

    Article  ADS  Google Scholar 

  20. Hofstadter, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  21. Haldane, F.D.M.: Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. Miyake, H., Siviloglou, G.A., Kennedy, C.J., Burton, W.C., Ketterle, W.: Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013)

    Article  ADS  Google Scholar 

  23. Aidelsburger, M., Atala, M., Lohse, M., Barreiro, J.T., Paredes, B., Bloch, I.: Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)

    Article  ADS  Google Scholar 

  24. Aidelsburger, M., Lohse, M., Schweizer, C., Atala, M., Barreiro, J.T., Nascimbène, S., Cooper, N.R., Bloch, I., Goldman, N.: Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162 (2015)

    Article  Google Scholar 

  25. Jotzu, G., Messer, M., Desbuquois, R., Lebrat, M., Uehlinger, T., Greif, D., Esslinger, T.: Experimental realisation of the topological Haldane model with ultracold fermions. Nature (London) 515, 237 (2014)

    Article  ADS  Google Scholar 

  26. Atala, M., Aidelsburger, M., Barreiro, J.T., Abanin, D., Kitagawa, T., Demler, E., Bloch, I.: Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795 (2013)

    Article  Google Scholar 

  27. Lang, L.-J., Cai, X., Chen, S.: Edge states and topological phases in one-dimensional optical superlattices. Phys. Rev. Lett. 108, 220401 (2012)

    Article  ADS  Google Scholar 

  28. Mei, F., Zhu, S.-L., Zhang, Z.-M., Oh, C.H., Goldman, N.: Simulating \(\mathbb{Z}_2\) topological insulators with cold atoms in a one-dimensional optical lattice. Phys. Rev. A 85, 013638 (2012)

    Article  ADS  Google Scholar 

  29. Mei, F., Zhang, D.-W., Zhu, S.-L.: Some topological states in one-dimensional cold atomic systems. Ann. Phys. 358, 58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Boada, O., Celi, A., Latorre, J.I., Lewenstein, M.: Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012)

    Article  ADS  Google Scholar 

  31. Celi, A., Massignan, P., Ruseckas, J., Goldman, N., Spielman, I.B., Juzeliūnas, G., Lewenstein, M.: Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014)

    Article  ADS  Google Scholar 

  32. Price, H.M., Zilberberg, O., Ozawa, T., Carusotto, I., Goldman, N.: Four-dimensional quantum Hall effect with ultracold atoms. Phys. Rev. Lett. 115, 195303 (2015)

    Article  ADS  Google Scholar 

  33. Kraus, Y.E., Lahini, Y., Ringel, Z., Verbin, M., Zilberber, O.: Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012)

    Article  ADS  Google Scholar 

  34. Mei, F., You, J.-B., Nie, W., Fazio, R., Zhu, S.-L., Kwek, L.C.: Simulation and detection of photonic Chern insulators in a one-dimensional circuit-QED lattice. Phys. Rev. A 92, 041805(R) (2015)

    Article  ADS  Google Scholar 

  35. Luo, X.-W., Zhou, X., Li, C.-F., Xu, J.-S., Guo, G.-C., Zhou, Z.-W.: Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun. 6, 7704 (2015)

    Article  ADS  Google Scholar 

  36. Yuan, L., Shi, Y., Fan, S.: Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741 (2016)

    Article  ADS  Google Scholar 

  37. Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O., Carusotto, I.: Synthetic dimensions in integrated photonics: from optical isolation to 4D quantum Hall physics. arXiv: 1510.03910

  38. Mancini, M., Pagano, G., Cappellini, G., Livi, L., Rider, M., Catani, J., Sias, C., Zoller, P., Inguscio, M., Dalmonte, M., Fallani, L.: Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. Stuhl, B.K., Lu, H.-I., Aycock, L.M., Genkina, D., Spielman, I.B.: Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Lu, L., Wang, Z., Ye, D., Ran, L., Fu, L., Joannopoulos, J.D., Soljǎcíc, M.: Experimental observation of Weyl points. Science 349, 622 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  41. Xiao, M., Chen, W.-J., He, W.-Y., Chan, C.T.: Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920 (2015)

    Article  Google Scholar 

  42. Bian, G., Chang, T.-R., Sankar, R., Xu, S.-Y., Zheng, H., Neupert, T., Chiu, C.-K., Huang, S.-M., Chang, G., Belopolski, I., Sanchez, D.S., Neupane, M., Alidoust, N., Liu, C., Wang, B., Lee, C.-C., Jeng, H.-T., Zhang, C., Yuan, Z., Jia, S., Bansil, A., Chou, F., Lin, H., Hasan, M.Z.: Topological nodal-line fermions in spin–orbit metal PbTaSe2. Nat. Commun. 7, 10556 (2016). doi:10.1038/ncomms10556

    Article  ADS  Google Scholar 

  43. Jiang, J.H.: Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes. Phys. Rev. A 85, 033640 (2012)

    Article  ADS  Google Scholar 

  44. Ganeshan, S., Sarma, S.: Das: constructing a Weyl semimetal by stacking one-dimensional topological phases. Phys. Rev. B 91, 125438 (2015)

    Article  ADS  Google Scholar 

  45. Dubcek, T., Kennedy, C.J., Lu, L., Ketterle, W., Soljacic, M., Buljan, H.: Weyl Points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space. Phys. Rev. Lett. 114, 225301 (2015)

    Article  ADS  Google Scholar 

  46. Zhang, D.-W., Zhu, S.-L., Wang, Z.D.: Simulating and exploring Weyl semimetal physics with cold atoms in a two-dimensional optical lattice. Phys. Rev. A 92, 013632 (2015)

    Article  ADS  Google Scholar 

  47. He, W.-Y., Zhang, S., Law, K.T.: Realization and detection ofWeyl semimetals and the chiral anomaly in cold atomic systems. Phys. Rev. A 94, 013606 (2016)

    Article  ADS  Google Scholar 

  48. Zhang, D.-W., Zhao, Y.X., Liu, R.-B., Xue, Z.-Y., Zhu, S.-L., Wang, Z.D.: Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice. Phys. Rev. A 93, 043617 (2016)

    Article  ADS  Google Scholar 

  49. Xu, Y., Zhang, C.: Dirac and Weyl rings in three dimensional cold atom optical lattices. Phys. Rev. A 93, 063606 (2016)

    Article  ADS  Google Scholar 

  50. Roati, G., D’Errico, C., Fallani, L., Fattori, M., Fort, C., Zaccanti, M., Modugno, G., Modugno, M., Inguscio, M.: Anderson localization of a non-interacting Bose–Einstein condensate. Nature (London) 453, 895 (2008)

    Article  ADS  Google Scholar 

  51. Uehlinger, T., Greif, D., Jotzu, G., Tarruell, L., Esslinger, T., Wang, L., Troyer, M.: Double transfer through Dirac points in a tunable honeycomb optical lattice. Eur. Phys. J. Spec. Top. 217, 121 (2013)

    Article  Google Scholar 

  52. Lim, L.-K., Fuchs, J.-N., Montambaux, G.: Bloch–Zener oscillations across a merging transition of Dirac points. Phys. Rev. Lett. 108, 175303 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I thank Z.-Y. Xue, F. Mei, and S.-L. Zhu for helpful discussions. This work was supported by the NSFC (Grant No. 11604103), the NKRDP of China (Grant No. 2016YFA0301803), the NSF of Guangdong Province (Grant No. 2016A030313436), the FDYT (Grant No. 2015KQNCX023), and the Startup Foundation of SCNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DW. Simulating Weyl points and nodal loops in an optical superlattice. Quantum Inf Process 15, 4477–4487 (2016). https://doi.org/10.1007/s11128-016-1428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1428-3

Keywords

Navigation