Advertisement

Quantum Information Processing

, Volume 15, Issue 11, pp 4649–4661 | Cite as

Dynamics of relative entropy of coherence under Markovian channels

  • Haozhen Situ
  • Xueyuan Hu
Article

Abstract

We study the relative entropy of coherence under the effect of certain one-qubit channels that are Markovian and noisy. The cohering power and decohering power of phase damping, amplitude damping, flip and depolarizing channels are analytically calculated. For phase damping channel, the decohering power on the \(x,\ y,\) and z bases is the same. The same phenomenon is observed for the flip and depolarizing channels. Further, we show that weak measurement and its reversal can be employed to suppress the decohering power of the amplitude damping channel.

Keywords

Relative entropy of coherence Markovian channels Decoherence Weak measurement 

Notes

Acknowledgments

We are very grateful to the reviewers and the editors for their invaluable comments and detailed suggestions that helped to improve the quality of the present paper. This work was supported by NSFC under Grant Nos. 11504205, 61502179, 61472452, the Fundamental Research Funds of Shandong University under Grant No. 2014TB018, and the Natural Science Foundation of Guangdong Province of China under Grant No. 2014A030310265. H.Z. Situ was sponsored by the State Scholarship Fund of the China Scholarship Council.

References

  1. 1.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: basic tools and equivalence classes of states under symmetric operations. New J. Phys. 15, 033001 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Marvian, I., Spekkens, R.W.: Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A 90, 062110 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., Nori, F.: Examining non-locality and quantum coherent dynamics induced by a common reservoir. Sci. Rep. 2, 885 (2012)ADSGoogle Scholar
  6. 6.
    Lambert, N., Chen, Y.-N., Chen, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)CrossRefGoogle Scholar
  7. 7.
    Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)CrossRefGoogle Scholar
  9. 9.
    Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Towards fully quantum second laws of thermodynamics: limitations on the evolution of quantum coherences. Phys. Rev. Lett. 115, 210403 (2015)CrossRefGoogle Scholar
  10. 10.
    Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1 (2007)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Yuan, X., Zhou, H.Y., Cao, Z., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Xi, Z.J., Li, Y.M., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Hu, X.Y., Fan, H.: Coherence extraction from measurement-induced disturbance. arXiv:1508.01978 (2015)
  18. 18.
    Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Hu, X.Y., Milne, A., Zhang, B.Y., Fan, H.: Quantum coherence of steered states. Sci. Rep. 6, 19365 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Hu, X.Y.: Coherence non-generating channels. arXiv:1604.00145 (2016)
  22. 22.
    Liu, Z.W., Hu, X.Y., Lloyd, S.: A theory of resource destruction. arXiv:1606.03723 (2016)
  23. 23.
    Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Singh, U., Bera, M.N., Misra, A., Pati, A.K.: Erasing quantum coherence: An operational approach. arXiv:1506.08186 (2015)
  25. 25.
    Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Xi, Z.J., Hu, M.L., Li, Y.M., Fan, H.: Cohering power of unitary operations and de-cohering of quantum operations. arXiv:1510.06473 (2015)
  28. 28.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  29. 29.
    Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)CrossRefGoogle Scholar
  32. 32.
    Lee, J.-C., Lim, H.-T., Hong, K.-H., Jeong, Y.-C., Kim, M.S., Kim, Y.-H.: Experimental demonstration of delayed-choice decoherence suppression. Nat. Commun. 5, 4522 (2014)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Mathematics and InformaticsSouth China Agricultural UniversityGuangzhouChina
  2. 2.School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and ApplicationShandong UniversityJinanChina

Personalised recommendations