Advertisement

Quantum Information Processing

, Volume 15, Issue 11, pp 4663–4679 | Cite as

High-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding

  • Hong Lai
  • Mehmet A. Orgun
  • Josef Pieprzyk
  • Jing Li
  • Mingxing Luo
  • Jinghua Xiao
  • Fuyuan Xiao
Article
  • 188 Downloads

Abstract

We propose an approach that achieves high-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. In particular, we encode a key with the Chebyshev-map values corresponding to Lucas numbers and then use k-Chebyshev maps to achieve consecutive and flexible key expansion and apply the pre-shared classical information between Alice and Bob and fountain codes for privacy amplification to solve the security of the exchange of classical information via the classical channel. Consequently, our high-capacity protocol does not have the limitations imposed by orbital angular momentum and down-conversion bandwidths, and it meets the requirements for longer distances and lower error rates simultaneously.

Keywords

High-capacity quantum key distribution k-Chebyshev maps Consecutive and flexible key expansion Longer distances and lower error rates 

Notes

Acknowledgments

Hong Lai has been supported by the Fundamental Research Funds for the Central Universities (No. XDJK2016C043) and the Doctoral Program of Higher Education (No. SWU115091). Josef Pieprzyk has been supported by National Science Centre, Poland, Project Registration Number UMO-2014/15/B/ST6/05130. Fuyuan Xiao is supported by the Fundamental Research Funds for the Central Universities (No. XDJK2015C107) and the Doctoral Program of Higher Education (No. SWU115008). Jinghua Xiao is supported by the National Natural Science Foundation of China (No. 61377067). Mingxing Luo is supported by the National Natural Science Foundation of China (No. 61303039). The paper is also supported by the financial support in part by the 1000-Plan of Chongqing by Southwest University (No. SWU116007).

References

  1. 1.
    Nikolopoulos, G.M., Ranade, K.S., Alber, G.: Error tolerance of two-basis quantum key-distribution protocols using qudits and two-way classical communication. Phys. Rev. A 73, 032325 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, L., Silberhorn, C., Walmsley, I.A.: Secure quantum key distribution using continuous variables of single photons. Phys. Rev. Lett 100(11), 110504 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Bechmann-Pasquinucci, H., Tittel, W.: Quantum cryptography using larger alphabets. Phys. Rev. A 61(6), 062308 (2000)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett 84(20), 4737 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Kwiat, P.G., Steinberg, A.M., Chiao, R.Y.: High-visibility interference in a Bell-inequality experiment for energy and time. Phys. Rev. A 47, 2472 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Brendel, J., Gisin, N., Tittel, W., Zbinden, H.: Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett 82, 2594 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Gibson, G., Courtial, J., Padgett, M.J., Vasnetsov, M., Pas’ko, V., Barnett, S.M., Franke-Arnold, S.: Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Molina-Terriza, G., Torres, J.P., Torner, L.: Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 013601 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Simon, D.S., Lawrence, N., Trevino, J., DalNegro, L., Sergienko, A.V.: High-capacity quantum Fibonacci coding for key distribution. Phys. Rev. A 87, 032312 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Chen, L., Lei, J., Romero, J.: Quantum digital spiral imaging. Light Sci. Appl. 3(3), e153 (2014)CrossRefGoogle Scholar
  14. 14.
    Lei, T., Zhang, M., Li, Y., et al.: Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl. 4(3), e257 (2015)CrossRefGoogle Scholar
  15. 15.
    Mi, S., Wang, T., Jin, G., et al.: High-capacity quantum secure direct communication with orbital angular momentum of photons. IEEE Photonics J. 7(5), 1–8 (2015)CrossRefGoogle Scholar
  16. 16.
    Hu, J.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)CrossRefGoogle Scholar
  17. 17.
    Karimi, E., Schulz, S.A., De Leon, I., et al.: Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3(5), e167 (2014)CrossRefGoogle Scholar
  18. 18.
    Tischler, N., Fernandez-Corbaton, I., Zambrana-Puyalto, X., et al.: Experimental control of optical helicity in nanophotonics. Light Sci. Appl. 3(6), e183 (2014)CrossRefGoogle Scholar
  19. 19.
    Zhou, Z., Li, Y., Ding, D., et al.: Orbital angular momentum photonic quantum interface. Light Sci. Appl. 5(1), e16019 (2016)CrossRefGoogle Scholar
  20. 20.
    Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.P., Capasso, F., Gaburro, Z.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Dal Negro, L., Lawrence, N., Trevino, J.: Analytical light scattering and orbital angular momentum spectra of arbitrary Vogel spirals. Opt. Express 20(16), 18209–18223 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Romero, J., Giovannini, D., Franke-Arnold, S., Barnett, S.M., Padgett, M.J.: Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement. Phys. Rev. A 86, 012334 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Fickler, R., Lapkiewicz, R., Plick, W.N., Krenn, M., Schaeff, C., Ramelow, S., Zeilinger, A.: Quantum entanglement of high angular momenta. Science 338, 640 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Buschman, R.G.: http://www.fq.math.ca/Scanned/1-4/buschman-a. Last accessed 27 Nov 2014
  25. 25.
    Lupo, C., Lloyd, S.: Quantum-locked key distribution at nearly the classical capacity rate. Phys. Rev. Lett. 113, 160502 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Weisstein, E.W.: Lucas number. http://mathworld.wolfram.com/LucasNumber.html. Last accessed 27 Nov 2014
  28. 28.
    Tseng, H., Jan, R., Yang, W.: A chaotic maps-based key agreement protocol that preserves user anonymity. In: IEEE International Conference on Communications, ICC2009, Dresden, Germany, pp. 1–6 (2009)Google Scholar
  29. 29.
    Kohda, T., Tsuneda, A.: Pseudonoise sequences by chaotic nonlinear maps and their correlation properties. IEICE Trans. Commun. E76-B, 855–862 (1993)Google Scholar
  30. 30.
    Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach to reliable distribution of bulk data. In: Steenstrup, M. (ed.) Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM ’98), pp. 56–67. ACM, New YorkGoogle Scholar
  31. 31.
    Lai, H., Orgun, M.A., Pieprzyk, J., Xiao, J.H., Xue, L,Y., Jia, Z.T.: Controllable quantum private queries using an entangled Fibonacci-sequence spiral source. Phys. Lett. A 379, 2561–2568 (2015)Google Scholar
  32. 32.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod Phys. 74, 145–190 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    Guha, S., Hayden, P., Krovi, H., Lloyd, S., Lupo, C., Shapiro, J.H.: Quantum enigma machines and the locking capacity of a quantum channel. Phys. Rev. X 4, 011016 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hong Lai
    • 1
  • Mehmet A. Orgun
    • 2
    • 3
  • Josef Pieprzyk
    • 4
    • 5
  • Jing Li
    • 6
  • Mingxing Luo
    • 7
  • Jinghua Xiao
    • 8
  • Fuyuan Xiao
    • 1
  1. 1.School of Computer and Information ScienceSouthwest UniversityChongqingChina
  2. 2.Department of ComputingMacquarie UniversitySydneyAustralia
  3. 3.Faculty of Information TechnologyMacau University of Science and TechnologyTaipaChina
  4. 4.School of Electrical Engineering and Computer ScienceQueensland University of TechnologyBrisbaneAustralia
  5. 5.Institute of Computer SciencePolish Academy of SciencesWarsawPoland
  6. 6.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  7. 7.Information Security and National Computing Grid Laboratory, School of Information Science and TechnologySouthwest Jiaotong UniversityChengduChina
  8. 8.School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations