Quantum Information Processing

, Volume 15, Issue 11, pp 4441–4460 | Cite as

Least significant qubit algorithm for quantum images

Article

Abstract

To study the feasibility of the classical image least significant bit (LSB) information hiding algorithm on quantum computer, a least significant qubit (LSQb) information hiding algorithm of quantum image is proposed. In this paper, we focus on a novel quantum representation for color digital images (NCQI). Firstly, by designing the three qubits comparator and unitary operators, the reasonability and feasibility of LSQb based on NCQI are presented. Then, the concrete LSQb information hiding algorithm is proposed, which can realize the aim of embedding the secret qubits into the least significant qubits of RGB channels of quantum cover image. Quantum circuit of the LSQb information hiding algorithm is also illustrated. Furthermore, the secrets extracting algorithm and circuit are illustrated through utilizing control-swap gates. The two merits of our algorithm are: (1) it is absolutely blind and (2) when extracting secret binary qubits, it does not need any quantum measurement operation or any other help from classical computer. Finally, simulation and comparative analysis show the performance of our algorithm.

Keywords

Least significant qubit Unitary operator Color digital images 

Notes

Acknowledgments

This work is supported by the National Science Foundation of China (Grant Numbers: 61471141, 61301099, 61361166006), and Basic Research Project of Shenzhen, China (Grant Numbers: JCYJ20150513151706561). We deeply thanks the previous researchers’ work about NEQR. Thanks are due to many anonymous reviewers for their assistance with the discussion about the designed three qubits comparator and the quantum measurement.

References

  1. 1.
    Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian models of computers as represented by Turing machnies. J. Stat. Phys. 22(5), 563–591 (1980)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mastriani, M.: Quantum image processing? arXiv: 1512.02942 [quan-ph] (2016)
  4. 4.
    Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)ADSGoogle Scholar
  5. 5.
    Venegas-Andraca, S.E., Ball, J.L., Burnett, K., Bose, S.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Latorre, J.I.: Image compression and entanglement. arXiv: quant-ph/0510031 (2005)
  7. 7.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process 14(5), 1559–1571 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sun, B., Le, P.Q., Iliyasu, A.M.: A multi-channel representation for images on quantum computers using the \(RGB\alpha \) color space. In: Intelligent Signal Processing, 2011 IEEE 7th International Symposium on. Floriana, Malta: IEEE. pp. 1–6 (2011)Google Scholar
  12. 12.
    Sang, J.Z., Wang, S., Li, Q.: A novel quantum representation for color digital images. Quantum Inf. Process, submitted (2016)Google Scholar
  13. 13.
    Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  14. 14.
    Fijany, A., Williams, C.: Quantum wavelet transform: fast algorithm and complete circuits. arXiv:quant-ph/9809004 (1998)
  15. 15.
    Klappenecker, A., Roetteler, M.: Discrete cosine transforms on quantum computers. In: IEEER8-EURASIP Symposium on Image and Signal Processing and Analysis (ISPA01), Pula, Croatia. pp. 464–468 (2001)Google Scholar
  16. 16.
    Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)MathSciNetMATHGoogle Scholar
  17. 17.
    Jiang, N., Wu, W.Y., Wang, L.: the quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)CrossRefMATHGoogle Scholar
  19. 19.
    Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sang, J.Z., Wang, S., Niu, X.M.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quantum Inf. Process. 15, 37–64 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Jiang, N., Wu, W.Y., Wang, L., Zhao, N.: Quantum image pseudocolor coding based on the density-stratified method. Quantum Inf. Process. 13(5), 1735–1755 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Mastriani, M.: Quantum Boolean Image Denoising. Quantum Inf. Process. 14(5), 1647–1673 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Iliyasu, A.M., Phuc, Q.L., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformation. Inform. Sci. 186, 126–149 (2011)CrossRefMATHGoogle Scholar
  25. 25.
    Zhang, W.W., Gao, F., Liu, B., Jia, H.Y., Wen, Q., Chen, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Zhang, W.W., Gao, F., Liu, B., Wen, Q., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 792–803 (2012)MathSciNetGoogle Scholar
  27. 27.
    Song, X.H., Wang, S., Liu, S., El-Latif, A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process 12(12), 3689–3706 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Song, X.H., Wang, S., Liu, S., El-Latif, A.A., Niu, X.M.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimedia Syst. 20(4), 379–388 (2014)CrossRefGoogle Scholar
  29. 29.
    Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. (2016). doi: 10.1007/s11128-016-1260-9
  30. 30.
    Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moiré Pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)CrossRefMATHGoogle Scholar
  31. 31.
    Wang, S., Sang, J.Z., Song, X.H., Niu, X.M.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)CrossRefGoogle Scholar
  32. 32.
    Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Quantum Inf. Process. 55, 107–123 (2016)MATHGoogle Scholar
  33. 33.
    Nielsom, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridfe University Press, Cambridge (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations