Skip to main content
Log in

Least significant qubit algorithm for quantum images

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

To study the feasibility of the classical image least significant bit (LSB) information hiding algorithm on quantum computer, a least significant qubit (LSQb) information hiding algorithm of quantum image is proposed. In this paper, we focus on a novel quantum representation for color digital images (NCQI). Firstly, by designing the three qubits comparator and unitary operators, the reasonability and feasibility of LSQb based on NCQI are presented. Then, the concrete LSQb information hiding algorithm is proposed, which can realize the aim of embedding the secret qubits into the least significant qubits of RGB channels of quantum cover image. Quantum circuit of the LSQb information hiding algorithm is also illustrated. Furthermore, the secrets extracting algorithm and circuit are illustrated through utilizing control-swap gates. The two merits of our algorithm are: (1) it is absolutely blind and (2) when extracting secret binary qubits, it does not need any quantum measurement operation or any other help from classical computer. Finally, simulation and comparative analysis show the performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian models of computers as represented by Turing machnies. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  3. Mastriani, M.: Quantum image processing? arXiv: 1512.02942 [quan-ph] (2016)

  4. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)

    ADS  Google Scholar 

  5. Venegas-Andraca, S.E., Ball, J.L., Burnett, K., Bose, S.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  6. Latorre, J.I.: Image compression and entanglement. arXiv: quant-ph/0510031 (2005)

  7. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process 14(5), 1559–1571 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Sun, B., Le, P.Q., Iliyasu, A.M.: A multi-channel representation for images on quantum computers using the \(RGB\alpha \) color space. In: Intelligent Signal Processing, 2011 IEEE 7th International Symposium on. Floriana, Malta: IEEE. pp. 1–6 (2011)

  12. Sang, J.Z., Wang, S., Li, Q.: A novel quantum representation for color digital images. Quantum Inf. Process, submitted (2016)

  13. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  14. Fijany, A., Williams, C.: Quantum wavelet transform: fast algorithm and complete circuits. arXiv:quant-ph/9809004 (1998)

  15. Klappenecker, A., Roetteler, M.: Discrete cosine transforms on quantum computers. In: IEEER8-EURASIP Symposium on Image and Signal Processing and Analysis (ISPA01), Pula, Croatia. pp. 464–468 (2001)

  16. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, N., Wu, W.Y., Wang, L.: the quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  19. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Sang, J.Z., Wang, S., Niu, X.M.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quantum Inf. Process. 15, 37–64 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Jiang, N., Wu, W.Y., Wang, L., Zhao, N.: Quantum image pseudocolor coding based on the density-stratified method. Quantum Inf. Process. 13(5), 1735–1755 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Mastriani, M.: Quantum Boolean Image Denoising. Quantum Inf. Process. 14(5), 1647–1673 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Iliyasu, A.M., Phuc, Q.L., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformation. Inform. Sci. 186, 126–149 (2011)

    Article  MATH  Google Scholar 

  25. Zhang, W.W., Gao, F., Liu, B., Jia, H.Y., Wen, Q., Chen, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, W.W., Gao, F., Liu, B., Wen, Q., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 792–803 (2012)

    MathSciNet  Google Scholar 

  27. Song, X.H., Wang, S., Liu, S., El-Latif, A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process 12(12), 3689–3706 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Song, X.H., Wang, S., Liu, S., El-Latif, A.A., Niu, X.M.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimedia Syst. 20(4), 379–388 (2014)

    Article  Google Scholar 

  29. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. (2016). doi:10.1007/s11128-016-1260-9

  30. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moiré Pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)

    Article  MATH  Google Scholar 

  31. Wang, S., Sang, J.Z., Song, X.H., Niu, X.M.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)

    Article  Google Scholar 

  32. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Quantum Inf. Process. 55, 107–123 (2016)

    MATH  Google Scholar 

  33. Nielsom, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridfe University Press, Cambridge (2000)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China (Grant Numbers: 61471141, 61301099, 61361166006), and Basic Research Project of Shenzhen, China (Grant Numbers: JCYJ20150513151706561). We deeply thanks the previous researchers’ work about NEQR. Thanks are due to many anonymous reviewers for their assistance with the discussion about the designed three qubits comparator and the quantum measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhi Sang or Qiong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, J., Wang, S. & Li, Q. Least significant qubit algorithm for quantum images. Quantum Inf Process 15, 4441–4460 (2016). https://doi.org/10.1007/s11128-016-1411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1411-z

Keywords

Navigation