Skip to main content
Log in

Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper’s hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H, Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers System and Signal Processing, pp. 175-179 (1984)

  2. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  4. Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1–127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lim, K., Ko, H., Kim, K., Suh, C., Rhee, J.K.: The Error Tolerance Bound for Secure Multi-Qubit QKD Against Incoherent Attack. IEEE J. Sel. Top. Quantum Electron. 21(3), 1–9 (2015)

    Article  Google Scholar 

  6. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photon. 4(10), 686–689 (2010)

    Article  ADS  Google Scholar 

  7. Li, H.W., Wang, S., Huang, J.Z., Chen, W., Yin, Z.Q., Li, F.Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.C., Bao, W.S.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84(6), 062308 (2011)

    Article  ADS  Google Scholar 

  8. Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12(11), 113026 (2010)

    Article  ADS  Google Scholar 

  9. Sun, S.H., Jiang, M.S., Liang, L.M.: Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system. Phys. Rev. A 83(6), 062331 (2011)

    Article  ADS  Google Scholar 

  10. Jiang, M.S., Sun, S.H., Li, C.Y., Liang, L.M.: Wavelength-selected photon-number-splitting attack against plug-and-play quantum key distribution systems with decoy states. Phys. Rev. A 86(3), 032310 (2012)

    Article  ADS  Google Scholar 

  11. Sun, S.H., Gao, M., Jiang, M.S., Li, C.Y., Liang, L.M.: Partially random phase attack to the practical two-way quantum-key-distribution system. Phys. Rev. A 85(3), 032304 (2012)

    Article  ADS  Google Scholar 

  12. Sajeed, S., Radchenko, I., Kaiser, S., Bourgoin, J.P., Pappa, A., Monat, L., Legré, M., Makarov, V.: Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing. Phys. Rev. A 91(3), 032326 (2015)

    Article  ADS  Google Scholar 

  13. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  14. Liu, Y., Chen, T.Y., Wang, L.J., Liang, H., Shentu, G.L., Wang, J., Cui, K., Yin, H.L., Liu, N.L., Li, L., Ma, X.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502 (2013)

    Article  ADS  Google Scholar 

  15. Kim, Y. S., Choi, Y., Kwon, O., Han, S. W., and Moon, S.: Plug-and-Play Measurement-Device-Independent Quantum Key Distribution. arXiv preprint arXiv:1501.03344 (2015)

  16. Muller, A., Herzog, T., Huttner, B., Tittel, W., Zbinden, H., Gisin, N.: Plug and play systems for quantum cryptography. Appl. Phys. Lett. 70(7), 793–795 (1997)

    Article  ADS  Google Scholar 

  17. Ma, H.Q., Wei, K.J., Yang, J.H.: Simple quantum key distribution scheme with excellent long-term stability. J. Opt. Soc. Am. B 30(9), 2560–2562 (2013)

    Article  ADS  Google Scholar 

  18. Pappa, A., Jouguet, P., Lawson, T., Chailloux, A., Legré, M., Trinkler, P.,Kerenidis, I., Diamanti, E.: Experimental plug and play quantum coin flipping. Nat. Commun. 5 (2014)

  19. Radchenko, I.V., Kravtsov, K.S., Kulik, S.P., Molotkov, S.N.: Relativistic quantum cryptography. Laser Phys. Lett. 11(6), 065203 (2014)

    Article  ADS  Google Scholar 

  20. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73(2), 022320 (2006)

    Article  ADS  Google Scholar 

  21. Jain, N., Stiller, B., Khan, I., Makarov, V., Marquardt, C., Leuchs, G.: Risk analysis of Trojan-horse attacks on practical quantum key distribution systems. IEEE J. Sel. Top. Quantum Electron. 21(3), 1–10 (2015)

    Article  Google Scholar 

  22. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  23. Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)

    Article  ADS  Google Scholar 

  24. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004)

    Article  ADS  Google Scholar 

  25. Agrawal, G.P.: Fiber-optic communication systems. Wiley, New Jersey (2012)

    Google Scholar 

  26. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51(3), 1863 (1995)

    Article  ADS  Google Scholar 

  27. Ltkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052304 (2000)

    Article  ADS  Google Scholar 

  28. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii 9(3), 3–11 (1973)

    MathSciNet  MATH  Google Scholar 

  29. Pearsall, T.P.: Ga 0.47 In 0.53 As: A ternary semiconductor for photodetector applications. IEEE J. of. Quantum Electron. 16(7), 709–720 (1980)

    Article  ADS  Google Scholar 

  30. http://www.idquantique.com/images/stories/PDF/clavis2-quantum-key-distribution/clavis2-specs

  31. Aleksic, S., Winkler, D., Franzl, G., Poppe, A., Schrenk, B., and Hipp, F.: Quantum key distribution over optical access networks. In Network and Optical Communications (NOC), 2013 18th European Conference on and Optical Cabling and Infrastructure (OC&i), 2013 8th Conference on (pp. 11–18). IEEE. (2013, July)

Download references

Acknowledgments

This work was supported by the ICT R&D program of MSIP/IITP. [R-20150903-002203, Standardization for Quantum Key Distribution]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to June-Koo Kevin Rhee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, H., Lim, K., Oh, J. et al. Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system. Quantum Inf Process 15, 4265–4282 (2016). https://doi.org/10.1007/s11128-016-1400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1400-2

Keywords

Navigation