Quantum Information Processing

, Volume 15, Issue 11, pp 4681–4710 | Cite as

A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols

  • Vishal Sharma
  • Kishore Thapliyal
  • Anirban Pathak
  • Subhashish Banerjee


The effect of noise on various protocols of secure quantum communication has been studied. Specifically, we have investigated the effect of amplitude damping, phase damping, squeezed generalized amplitude damping, Pauli type as well as various collective noise models on the protocols of quantum key distribution, quantum key agreement, quantum secure direct quantum communication and quantum dialogue. From each type of protocol of secure quantum communication, we have chosen two protocols for our comparative study: one based on single-qubit states and the other one on entangled states. The comparative study reported here has revealed that single-qubit-based schemes are generally found to perform better in the presence of amplitude damping, phase damping, squeezed generalized amplitude damping noises, while entanglement-based protocols turn out to be preferable in the presence of collective noises. It is also observed that the effect of noise depends upon the number of rounds of quantum communication involved in a scheme of quantum communication. Further, it is observed that squeezing, a completely quantum mechanical resource present in the squeezed generalized amplitude channel, can be used in a beneficial way as it may yield higher fidelity compared to the corresponding zero squeezing case.


Quantum communication Noise models Effect of noise on the models of secure quantum communication Single-qubit-based schemes Entangled-state-based scheme 



AP acknowledges the support provided by DST, India, through the project number EMR/2015/000393. SB acknowledges support provided by the project number 03(1369)/16/EMR-II funded by Council of Scientific and Industrial Research, India.


  1. 1.
    Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, p. 175 (1984)Google Scholar
  2. 2.
    Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)zbMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hillery, M., Buzek, V., Bertaiume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)CrossRefGoogle Scholar
  9. 9.
    Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    An, N.B.: Secure dialogue without prior key distribution. J. Korean Phys. Soc. 47, 562 (2005)Google Scholar
  13. 13.
    Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283, 1984 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Jun, L., Liu, Y.M., Cao, H.J., Shi, S.H., Zhang, Z.J.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Li, X.-H., Deng, F.-G., Li, C.-Y., Liang, Y.-J., Zhou, P., Zhou, H.-Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354 (2006)Google Scholar
  20. 20.
    Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Hai-Jing, C., He-Shan, S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290 (2006)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Yuan, H., Song, J., Zhou, J., Zhang, G., Wei, X.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Int. J. Theor. Phys. 50, 2403 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Shukla, C.: Design and analysis of quantum communication protocols. Ph.D. thesis, Jaypee Institute of Information Technology (2014)Google Scholar
  27. 27.
    Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)zbMATHGoogle Scholar
  29. 29.
    Preskill, J.: Lecture notes for physics 229: Quantum information and computation. California Institute of Technology (1998)Google Scholar
  30. 30.
    Banerjee, S., Ghosh, R.: Dynamics of decoherence without dissipation in a squeezed thermal bath. J. Phys. A: Math. Theor. 40, 13735 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Omkar, S., Srikanth, R., Banerjee, S.: Dissipative and non-dissipative single-qubit channels: dynamics and geometry. Quantum Inf. Process. 12, 3725 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Banerjee, S., Srikanth, R.: Geometric phase of a qubit interacting with a squeezed-thermal bath. Eur. Phys. J. D 46, 335 (2008)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Huang, J.H., Zhu, S.Y.: Necessary and sufficient conditions for the entanglement sudden death under amplitude damping and phase damping. Phys. Rev. A 76, 062322 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., Cabello, A., Weinfurter, H.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Chiuri, A., Rosati, V., Vallone, G., Pádua, S., Imai, H., Giacomini, S., Macchiavello, C., Mataloni, P.: Experimental realization of optimal noise estimation for a general Pauli channel. Phys. Rev. Lett. 107, 253602 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Fischer, D.G., Mack, H., Cirone, M.A., Freyberger, M.: Enhanced estimation of a noisy quantum channel using entanglement. Phys. Rev. A 64, 022309 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    Fern, J., Whaley, K.B.: Lower bounds on the nonzero capacity of Pauli channels. Phys. Rev. A 78, 062335 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Thapliyal, K., Banerjee, S., Pathak, A.: Tomograms for open quantum systems: in (finite) dimensional optical and spin systems. Ann. Phys. 366, 148 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Phys. 8, 117 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Turchette, Q.A., Myatt, C.J., King, B.E., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs. Phys. Rev. A 62, 053807 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    Myatt, C.J., King, B.E., Turchette, Q.A., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    Marques, B., Matoso, A.A., Pimenta, W.M., Gutiérrez-Esparza, A.J., Santos, M.F., Pádua, S.: Experimental simulation of decoherence in photonics qudits. Sci. Rep. 5, 16049 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14, 3441 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Kuang, L.M., Chen, X., Chen, G.H., Ge, M.L.: Jaynes-Cummings model with phase damping. Phys. Rev. A 56, 3139 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    Sheng, Y.B., Deng, F.G.: Efficient quantum entanglement distribution over an arbitrary collective-noise channel. Phys. Rev. A 81, 042332 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. A 92, 017901 (2004)ADSGoogle Scholar
  52. 52.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    Guan, X.-W., Chen, X.-B., Wang, L.-C., Yang, Y.-X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53, 2236 (2014)CrossRefzbMATHGoogle Scholar
  54. 54.
    Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Vishal Sharma
    • 1
  • Kishore Thapliyal
    • 2
  • Anirban Pathak
    • 2
  • Subhashish Banerjee
    • 1
  1. 1.Indian Institute of Technology JodhpurRajasthanIndia
  2. 2.Jaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations