Skip to main content
Log in

Influence of counter-rotating interaction on quantum phase transition in Dicke-Hubbard lattice: an extended coherent-state approach

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the ground-state behavior of the Dicke-Hubbard model including counter-rotating terms. By generalizing an extended coherent-state approach within mean-field theory, we self-consistently obtain the ground-state energy and delocalized order parameter. Localization–delocalization quantum phase transition of photons is clearly observed by breaking the parity symmetry. Particularly, Mott lobes are fully suppressed, and the delocalized order parameter shows monotonic enhancement by increasing qubit–cavity coupling strength, in sharp contrast to the Dicke-Hubbard model under rotating-wave approximation. Moreover, the corresponding phase boundaries are stabilized by decreasing photon hopping strength, compared to the Rabi-Hubbard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Greentree, A., Tahan, C., Cole, J., Hollenberg, L.: Quantum phase transitions of light. Nat. Phys. 2, 856 (2006)

    Article  Google Scholar 

  2. Hartmann, M., Brandao, F., Plenio, M.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849 (2006)

    Article  Google Scholar 

  3. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, England (2011)

    Book  MATH  Google Scholar 

  4. Hartmann, M., Brandao, F., Plenio, M.: Quantum many-body phenomena in coupled cavity arrays. Laser Photonics Rev. 2, 527 (2008)

    Article  Google Scholar 

  5. Na, N., Utsunomiya, S., Tian, L., Yamamoto, Y.: Strongly correlated polaritons in a two-dimensional array of photonic crystal microcavities. Phys. Rev. A 77, 031803 (2008)

    Article  ADS  Google Scholar 

  6. Koch, J., Hur, K.L.: Superfluid-Mott-insulator transition of light in the Jaynes-Cummings lattice. Phys. Rev. A 80, 023811 (2009)

    Article  ADS  Google Scholar 

  7. Hur, K.L., Henriet, L., Petrescu, A., Plekhanov, K., Roux, G.,Schiró, M.: Many-body quantum electrodynamics networks: non-equilibrium condensed matter physics with light. arXiv:1505.00167 (2015)

  8. Schmidt, S., Blatter, G.: Strong coupling theory for the Jaynes-Cummings-Hubbard model. Phys. Rev. Lett. 103, 086403 (2009)

    Article  ADS  Google Scholar 

  9. Schmidt, S., Blatter, G.: Excitations of strongly correlated lattice polaritons. Phys. Rev. Lett. 104, 216402 (2010)

    Article  ADS  Google Scholar 

  10. Nietner, C., Pelster, A.: Ginzburg-Landau theory for the Jaynes-Cummings-Hubbard model. Phys. Rev. A 85, 043831 (2012)

    Article  ADS  Google Scholar 

  11. Hwang, M.-J., Choi, M.-S.: Large-scale maximal entanglement and Majorana bound states in coupled circuit quantum electrodynamic systems. Phys. Rev. B 87, 125404 (2013)

    Article  ADS  Google Scholar 

  12. You, J.-B., Yang, W., Xu, Z.-Y., Chan, A., Oh, C.: Phase transition of light in circuit-QED lattices coupled to nitrogen-vacancy centers in diamond. Phys. Rev. B 90, 195112 (2014)

    Article  ADS  Google Scholar 

  13. Bujnowski, B., Corso, J., Hayward, A., Cole, J., Martin, A.: Supersolid phases of light in extended Jaynes-Cummings-Hubbard systems. Phys. Rev. A 90, 043801 (2014)

    Article  ADS  Google Scholar 

  14. Kurcz, A., Bermudez, A., García-Ripoll, J.: Hybrid quantum magnetism in circuit QED: from spin-photon waves to many-body spectroscopy. Phys. Rev. Lett. 112, 180405 (2014)

    Article  ADS  Google Scholar 

  15. Hayward, A., Martin, A.: Superfluid-Mott transitions and vortices in the Jaynes-Cummings-Hubbard lattices with time reversal symmetry breaking. Phys. Rev. A 93, 023828 (2016)

    Article  ADS  Google Scholar 

  16. Fisher, M., Weichman, P., Grinstein, G., Fisher, D.: Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  17. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  18. Lv, J.-P., Chen, G., Deng, Y., Meng, Z.-Y.: Coulomb liquid phases of bosonic cluster Mott insulators on a pyrochlore lattice. Phys. Rev. Lett. 115, 037202 (2015)

    Article  ADS  Google Scholar 

  19. Rossini, D., Fazio, R.: Mott-insulating and glassy phases of polaritons in 1D arrays of coupled cavities. Phys. Rev. Lett. 99, 186401 (2007)

    Article  ADS  Google Scholar 

  20. Zhao, J., Sandvik, A., Ueda, K.: Insulator to superfluid transition in coupled photonic cavities in two dimensions. arXiv:0806.3603 (2008)

  21. Pippan, P., Evertz, H., Hohenadler, M.: Excitation spectra of strongly correlated lattice bosons and polaritons. Phys. Rev. A 80, 033612 (2009)

    Article  ADS  Google Scholar 

  22. Hohenadler, M., Aichhorn, M., Schmidt, S., Pollet, L.: Dynamical critical exponent of the Jaynes-Cummings-Hubbard model. Phys. Rev. A 84, 041608 (2011)

    Article  ADS  Google Scholar 

  23. Houck, A., Türeci, H., Koch, J.: On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292 (2012)

    Article  Google Scholar 

  24. Toyoda, K., Matsuno, Y., Noguchi, A., Haze, S., Urabe, S.: Experimental realization of a quantum phase transition of polaritonic excitations. Phys. Rev. Lett. 111, 160501 (2013)

    Article  ADS  Google Scholar 

  25. Niemczyk, T., Deppe, F., Huebl, H., Menzel, E., Hocke, F., Schwarz, M., Garcia-Ripoll, J., Zueco, D., Hümmer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772 (2010)

    Article  Google Scholar 

  26. Zheng, H., Takada, Y.: Importance of counter-rotating coupling in the superfluid-to-Mott-insulator quantum phase transition of light in the Jaynes-Cummings lattice. Phys. Rev. A 84, 043819 (2011)

    Article  ADS  Google Scholar 

  27. Schiró, M., Bordyuh, M., Öztop, B.: Phase transition of light in cavity QED lattices. Phys. Rev. Lett. 109, 053601 (2012)

    Article  ADS  Google Scholar 

  28. Schiró, M., Bordyuh, M., Öztop, B., Türeci, H.: Quantum phase transition of light in the Rabi-Hubbard model. J. Phys. B: Atomic, Mol. Opt. Phys. 46, 224021 (2013)

    Article  ADS  Google Scholar 

  29. Kumar, B., Kalal, S.: Quantum Ising dynamics and Majorana-like edge modes in the Rabi lattice model. Phys. Rev. A 88, 011802 (2013)

    Article  ADS  Google Scholar 

  30. Flottat, T., Hébert, F., Rousseau, V., Batrouni, G.: Quantum Monte Carlo study of the Rabi-Hubbard model. arXiv:1603.01126 (2016)

  31. Lei, S.-C., Lee, R.-K.: Quantum phase transitions of light in the Dicke-Bose-Hubbard model. Phys. Rev. A 77, 033827 (2008)

    Article  ADS  Google Scholar 

  32. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  33. Emary, C., Brandes, T.: Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model. Phys. Rev. Lett. 90, 044101 (2003)

    Article  ADS  Google Scholar 

  34. Lambert, N., Emary, C., Brandes, T.: Entanglement and the phase transition in single-mode superradiance. Phys. Rev. Lett. 92, 073602 (2004)

    Article  ADS  Google Scholar 

  35. Vidal, J., Dusuel, S.: Finite-size scaling exponents in the Dicke model. EuroPhys. Lett. 74, 817 (2006)

    Article  ADS  Google Scholar 

  36. Gu, S.-J.: Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24, 4371 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Chen, Q.-H., Zhang, Y.-Y., Liu, T., Wang, K.-L.: Numerically exact solution to the finite-size Dicke model. Phys. Rev. A 78, 051801 (2008)

    Article  ADS  Google Scholar 

  38. Liu, T., Zhang, Y.-Y., Chen, Q.-H., Wang, K.-L.: Large-N scaling behavior of the ground-state energy, fidelity, and the order parameter in the Dicke model. Phys. Rev. A 80, 023810 (2009)

    Article  ADS  Google Scholar 

  39. Castaños, O., Nahmad-Achar, E., López-Peña, R., Hirsch, J.: No singularities in observables at the phase transition in the Dicke model. Phys. Rev. A 83, 051601 (2011)

    Article  ADS  Google Scholar 

  40. Braak, D.: Integrability of the Rabi model. Phys. Rev. Lett. 107, 100401 (2011)

    Article  ADS  Google Scholar 

  41. Chen, Q.-H., Wang, C., He, S., Liu, T., Wang, K.-L.: Exact solvability of the quantum Rabi model using Bogoliubov operators. Phys. Rev. A 86, 023822 (2012)

    Article  ADS  Google Scholar 

  42. He, S., Duan, L., Chen, Q.-H.: Exact solvability, non-integrability, and genuine multipartite entanglement dynamics of the Dicke model. New. J. Phys. 17, 043033 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. de Leeuw, A.-W., Onishchenko, O., Duine, R., Stoof, H.: Effects of dissipation on the superfluid-Mott-insulator transition of photons. Phys. Rev. A 91, 033609 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Shu He and Prof. Qing-Hu Chen for helpful discussions. This work was supported by the National Natural Science Foundation of Special Theoretical Physics under Grant No. 11547124. Chen Wang has been partially supported by the National Natural Science Foundation of China under Grant Nos. 11574052 and 11504074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Wang, C. Influence of counter-rotating interaction on quantum phase transition in Dicke-Hubbard lattice: an extended coherent-state approach. Quantum Inf Process 15, 4347–4359 (2016). https://doi.org/10.1007/s11128-016-1392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1392-y

Keywords

Navigation