Skip to main content
Log in

Obtaining a linear combination of the principal components of a matrix on quantum computers

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Principal component analysis is a multivariate statistical method frequently used in science and engineering to reduce the dimension of a problem or extract the most significant features from a dataset. In this paper, using a similar notion to the quantum counting, we show how to apply the amplitude amplification together with the phase estimation algorithm to an operator in order to procure the eigenvectors of the operator associated to the eigenvalues defined in the range \(\left[ a, b\right] \), where a and b are real and \(0 \le a \le b \le 1\). This makes possible to obtain a combination of the eigenvectors associated with the largest eigenvalues and so can be used to do principal component analysis on quantum computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karl Pearson, F.R.S.: Liii. On lines and planes of closest fit to systems of points in space. Philos. Mag. Ser. 6(2), 559–572 (1901). doi:10.1080/14786440109462720

    Article  MATH  Google Scholar 

  2. Jolliffe, I.: Principal Component Analysis. Wiley, Hoboken (2002)

    MATH  Google Scholar 

  3. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B (Statistical Methodology) 61, 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Leeuw, J.: Nonlinear Principal Component Analysis. Department of Statistics, UCLA (2005)

  5. Schölkopf, B., Smola, A., Müller, K.R.: Kernel principal component analysis. In: Artificial Neural Networks ICANN’97, pp. 583–588. Springer (1997)

  6. Kambhatla, N., Leen, T.K.: Dimension reduction by local principal component analysis. Neural Comput. 9, 1493–1516 (1997)

    Article  Google Scholar 

  7. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA), pattern analysis and machine intelligence. IEEE Trans. 27, 1945–1959 (2005)

    Google Scholar 

  8. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, NewYork (2006)

    MATH  Google Scholar 

  9. Shlens, J.: A tutorial on principal component analysis, arXiv preprint. arXiv:1404.1100 (2014)

  10. Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem. Electron. Colloq. Comput. Complex. (ECCC) 3 (1996)

  11. Papageorgiou, A., Petras, I., Traub, J., Zhang, C.: A fast algorithm for approximating the ground state energy on a quantum computer. Math. Comput. 82, 2293–2304 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Daskin, A., Grama, A., Kais, S.: Multiple network alignment on quantum computers. Quantum Inf. Process. 13, 2653–2666 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Daskin, A.: Quantum isorank: efficient alignment of multiple ppi networks, arXiv preprint. arXiv:1506.05905 (2015)

  14. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  ADS  Google Scholar 

  16. Wittek, P.: Quantum Machine Learning: What Quantum Computing Means to Data Mining. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

  17. Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum computing for pattern classification, In: PRICAI 2014: Trends in Artificial Intelligence, pp. 208–220. Springer (2014)

  18. Neven, H., Denchev, V.S., Rose, G., Macready, WG.: Training a binary classifier with the quantum adiabatic algorithm, arXiv preprint. arXiv:0811.0416 (2008)

  19. Neven, H., Denchev, V.S., Rose, G., Macready, W.G.: Training a large scale classifier with the quantum adiabatic algorithm, arXiv preprint. arXiv:0912.0779 (2009)

  20. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90, 261–287 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lloyd, S., Garnerone, S., Zanardi, P.: Quantum algorithms for topological and geometric analysis of big data, arXiv preprint. arXiv:1408.3106 (2014)

  22. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014)

    Article  Google Scholar 

  23. Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)

    Article  ADS  Google Scholar 

  24. Mosca, M. et al.: Quantum searching, counting and amplitude amplification by eigenvector analysis, In: MFCS98 Workshop on Randomized Algorithms, pp. 90–100 (1998)

  25. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaye, P., Mosca, M., Laflamme, R.: An Introduction to Quantum Computing. Oxford Univ. Press, Oxford (2006)

    MATH  Google Scholar 

  27. Mosca, M.: Counting by quantum eigenvalue estimation. Theor. Comput. Sci. 264, 139–153 (2001). mFCS’98

    Article  MathSciNet  MATH  Google Scholar 

  28. Bullock, S.S., OLeary, D.P., Brennen, G.K.: Asymptotically optimal quantum circuits for d-level systems. Phys. Rev. Lett. 94, 230502 (2005)

    Article  ADS  Google Scholar 

  29. Ivanov, P.A., Kyoseva, E.S., Vitanov, N.V.: Engineering of arbitrary u (n) transformations by quantum householder reflections. Phys. Rev. A 74, 022323 (2006)

    Article  ADS  Google Scholar 

  30. Urías, J., Quiñones, D.A.: Householder methods for quantum circuit design. Can. J. Phys. 93, 1–8 (2015)

    Google Scholar 

  31. Ivanov, P.A., Vitanov, N.V.: Synthesis of arbitrary unitary transformations of collective states of trapped ions by quantum householder reflections. Phys. Rev. A 77, 012335 (2008)

    Article  ADS  Google Scholar 

  32. Higham, N.J., Tisseur, F.: Bounds for eigenvalues of matrix polynomials. Linear Algebra Appl. 358, 5–22 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stroock, D., Diaconis, P.: Geometric bounds for eigenvalues of Markov chains. Annals Appl. Probab. 1, 36–61 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, C.W.: On bounds of extremal eigenvalues of irreducible and m-reducible matrices. Linear Algebra Appl. 402, 29–45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wilkinson, J.H.: The Algebraic Eigenvalue Problem, vol. 87. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  36. Stewart, G.W.: Gershgorin theory for the generalized eigenvalue problem. Math. Comput. 29, 600–606 (1975)

    MathSciNet  MATH  Google Scholar 

  37. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Commun. Math. Phys. 270, 359–371 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Childs, A.M., Kothari, R.: Simulating sparse hamiltonians with star decompositions, In: Theory of Quantum Computation, Communication, and Cryptography, series Lecture Notes in Computer Science, Vol. 6519, pp. 94–103. Springer, Berlin (2011)

  39. Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  40. Suzuki, M.: Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Commun. Math. Phys. 51, 183–190 (1976)

    Article  ADS  MATH  Google Scholar 

  41. Poulin, D., Hastings, M.B., Wecker, D., Wiebe, N., Doherty, A.C., Troyer, M.: The Trotter step size required for accurate quantum simulation of quantum chemistry. Quantum Inf. Comput. 15, 361–384 (2015)

    MathSciNet  Google Scholar 

  42. Daskin, A., Grama, A., Kollias, G., Kais, S.: Universal programmable quantum circuit schemes to emulate an operator. J. Chem. Phys. 137, 234112 (2012)

    Article  ADS  Google Scholar 

  43. Daskin, A., Grama, A., Kais, S.: A universal quantum circuit scheme for finding complex eigenvalues. Quantum Inf. Process. 13, 333–353 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544–557 (2009)

    Article  Google Scholar 

  45. Chaudhuri, R., Bernacchia, A., Wang, X.J.: A diversity of localized timescales in network activity. Elife 3, e01239 (2014)

    Google Scholar 

  46. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognit. Neurosci. 3, 71–86 (1991)

    Article  Google Scholar 

  47. Zhang, D., Chen, S., Liu, J.: Representing image matrices: eigenimages versus eigenvectors, In: Advances in Neural Networks–ISNN 2005, pp. 659–664. Springer (2005)

Download references

Acknowledgments

This work is supported by TUBITAK under the project number 115E747.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Daskin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daskin, A. Obtaining a linear combination of the principal components of a matrix on quantum computers. Quantum Inf Process 15, 4013–4027 (2016). https://doi.org/10.1007/s11128-016-1388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1388-7

Keywords

Navigation