Skip to main content
Log in

Elementary quantum gates in different bases

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We introduce transformation matrix connecting sets of the displaced states with different displacement amplitudes. Arbitrary pure one-mode state can be represented in new basis of the displaced number (Fock) states (\(\alpha \)-representation) by multiplying the transposed transformation matrix on a column vector of initial state. Analytical expressions of the \(\alpha \)-representation of superposition of vacuum and single photon and two-mode squeezed vacuum are obtained. On the basis of the developed mathematical formalism, we consider the mechanism of interaction between qubits which is based on their displaced properties. Superposed coherent states deterministically displace target state on equal modulo but opposite on sign values. Registration of the single photon in auxiliary mode (probabilistic operation) results in constructive interference and gives birth to entangled hybrid state corresponding to outcome of elementary quantum gates. The method requires minimal number of resource and works in realistic scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Shor, P.: Proceedings of the 35th Annual Symposium on Foundation of Computer Science. IEEE Computer Society Press, Santa Fe (1994)

    Google Scholar 

  3. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  4. Lutkenhaus, N., Calsamiglia, J., Suominen, K.A.: Bell measurements for teleportation. Phys. Rev. A 59, 3245 (1999)

    ADS  MathSciNet  Google Scholar 

  5. Knill, E., Laflamme, L., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  MATH  Google Scholar 

  6. Rausendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  7. Kim, J., Lee, J., Ji, S.-W., Nha, H., Anisimov, P.M., Doqling, J.P.: Coherent-state optical qudit claster state generation and teleportation via homodyne detection. arXiv:1012.5872v1 [quant-ph] (2010)

  8. Schrodinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935)

    Article  ADS  MATH  Google Scholar 

  9. Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003)

    Article  ADS  Google Scholar 

  10. Opatrny, T., Kurizki, T.G., Welsch, D.-G.: Improvement of teleportation of continuous variables by photon subtraction via conditional measurement. Phys. Rev. A 61, 032302 (2000)

    Article  ADS  Google Scholar 

  11. Olivares, S., Paris, M.G.A.: Squeezed Fock state by inconclusive photon subtraction. J. Opt. B Quantum Semiclass. Opt. 7, S616–S621 (2005)

    Article  ADS  Google Scholar 

  12. Cochrane, P.T., Ralph, T.C., Milburn, G.J.: Teleportation improvement by conditional measurements on the two-mode squeezed vacuum. Phys. Rev. A 65, 062306 (2002)

    Article  ADS  Google Scholar 

  13. Olivares, S., Paris, M.G.A., Bonifacio, R.: Teleportation improvement by inconclusive photon subtraction. Phys. Rev. A 67, 032314 (2003)

    Article  ADS  Google Scholar 

  14. Marek, P., Fiurasek, J.: Elementary gates for quantum information with superposed coherent states. Phys. Rev. A 82, 014304 (2010)

    Article  ADS  Google Scholar 

  15. Tipsmark, A., Dong, R., Laghaout, A., Marek, P., Jezek, M., Andersen, U.L.: Experimental demonstration of a Hadamard gate for coherent state qubits. Phys. Rev. A 84, 050301(R) (2011)

    Article  ADS  Google Scholar 

  16. Neergaard-Nielsen, J.S., Takeuchi, M., Wakui, K., Takahashi, H., Hayasaka, K., Takeoka, M., Sasaki, M.: Optical continuous-variable qubit. Phys. Rev. Lett. 105, 053602 (2010)

    Article  ADS  MATH  Google Scholar 

  17. Podoshvedov, S.A.: Building of one-way Hadamard gate for squeezed coherent states. Phys. Rev. A 87, 012307 (2013)

    Article  ADS  Google Scholar 

  18. Podoshvedov, S.A., Kim, J., Kim, K.: Elementary quantum gates with Gaussian states. Quantum Inf. Process. 13, 1723 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Podoshvedov, S.A.: Extraction of displaced number state. JOSA B 31, 2491 (2014)

    Article  ADS  Google Scholar 

  20. de Oliveira, F.A.M., Kim, M.S., Knight, P.L., Buzek, V.: Properties of displaced number states. Phys. Rev. A 41, 2645 (1990)

    Article  ADS  Google Scholar 

  21. Podoshvedov, S.A.: Displaced photon states as resource for dense coding. Phys. Rev. A 79, 012319 (2009)

    Article  ADS  Google Scholar 

  22. Podoshvedov, S.A.: Performance of a quantum key distribution with dual-rail displaced photon states. JETP 137, 656 (2010)

    Google Scholar 

  23. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  24. Wunsche, A.: Displaced Fock states and their connection to quasiprobabilities. Quantum Opt. 3, 359 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  25. Takeochi, S., Yamamoto, Y., Hogue, H.H.: Development of a high-quantum-efficiency single-photon counting system. Appl. Phys. Lett. 74, 1063 (1999)

    Article  ADS  Google Scholar 

  26. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    Article  ADS  Google Scholar 

  27. Podoshvedov, S.A., Kim, J.: A nonlinear \(\chi ^{(2)}\) Mach–Zehnder interferometer: conditional preparation of maximal microscopic entanglement. Phys. Rev. A 75, 032346 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Podoshvedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podoshvedov, S.A. Elementary quantum gates in different bases. Quantum Inf Process 15, 3967–3993 (2016). https://doi.org/10.1007/s11128-016-1375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1375-z

Keywords

Navigation