Skip to main content
Log in

Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambrige University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  3. DiVincenzo, D.P.: Quantum computation. Science 270, 255–261 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165–171 (2007)

    Article  ADS  Google Scholar 

  6. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  8. Bennett, C.G., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theory 44, 2724–2742 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Holevo, A.S., Giovannetti, V.: Quantum channels and their entropic characteristics. Rep. Prog. Phys. 75, 046001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)

    Article  ADS  Google Scholar 

  11. Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301(R) (2002)

    Article  ADS  Google Scholar 

  12. D’Arrigo, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. N. J. Phys. 9, 310 (2007)

    Article  Google Scholar 

  13. Plenio, M.B., Virmani, S.: Spin chains and channels with memory. Phys. Rev. Lett. 99, 120504 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. D’Arrigo, A., Benenti, G., Falci, G., Macchiavello, C.: Classical and quantum capacities of a fully correlated amplitude damping channel. Phys. Rev. A 88, 042337 (2013)

    Article  ADS  Google Scholar 

  15. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  16. Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  17. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)

    Article  ADS  Google Scholar 

  18. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  19. Sun, Q.Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  20. Paraoanu, G.S.: Partial measurements and the realization of quantum-mechanical counterfactuals. Found. Phys. 41, 1214–1235 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Paraoanu, G.S.: Generalized partial measurements. EPL (Europhys Lett) 93, 64002 (2011)

    Article  ADS  Google Scholar 

  22. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  23. Li, Y.L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067–3077 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  25. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  26. Man, Z.X., Xia, Y.J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)

    Article  ADS  Google Scholar 

  27. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  28. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  29. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Almeida, M.P., et al.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  31. Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)

    Article  ADS  Google Scholar 

  32. Arshed, N., Toor, A.H.: Entanglement-assisted capacities of time-correlated amplitude-damping channel. arXiv:1307.5403 (2013)

  33. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  34. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Funds of the National Natural Science Foundation of China under Grant Nos. 11247006 and 11365011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Mao Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Yao, Y., Xie, YM. et al. Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal. Quantum Inf Process 15, 3881–3891 (2016). https://doi.org/10.1007/s11128-016-1356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1356-2

Keywords

Navigation