Skip to main content
Log in

Quantum approach to Bertrand duopoly

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The aim of the paper is to study the Bertrand duopoly example in the quantum domain. We use two ways to write the game in terms of quantum theory. The first one adapts the Li–Du–Massar scheme for the Cournot duopoly. The second one is a simplified model that exploits a two qubit entangled state. In both cases, we focus on finding Nash equilibria in the resulting games. Our analysis allows us to take another look at the classic model of Bertrand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We should stress here that quantum games are games in the standard sense and the reader should not assign any mysterious contexts to the adjective quantum.

References

  1. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Baaquie, B.E.: Interest Rates and Coupon Bonds in Quantum Finance. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Khrennikov, A.: Ubiquitous Quantum Structure. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  7. Haven, E., Khrennikov, A.: Quantum Social Science. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  8. Baaquie, B.E.: Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Fra̧ckiewicz, P.: Application of the Eisert–Wilkens–Lewenstein quantum game scheme to decision problems with imperfect recall. J. Phys. A Math. Theor. 44, 325304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Piotrowski, E.W., Sładkowski, J.: Trading by quantum rules—quantum anthropic principle. Int. J. Theor. Phys. 42, 1101 (2003)

    Article  MATH  Google Scholar 

  11. Piotrowski, E.W., Sładkowski, J.: Quantum games in finance. Quant. Finance 4, C61 (2004)

    Article  MathSciNet  Google Scholar 

  12. Piotrowski, E.W., Sładkowski, J.: Quantum diffusion of prices and profits. Phys. A 345, 185 (2005)

    Article  Google Scholar 

  13. Piotrowski, E.W., Sładkowski, J.: Quantum English auctions. Phys. A 318, 505 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Piotrowski, E.W., Sładkowski, J.: Quantum auctions: facts and myths. Phys. A 387, 3949 (2008)

    Article  MathSciNet  Google Scholar 

  15. Sładkowski, J.: Giffen paradoxes in quantum market games. Phys. A 324, 234 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aerts, D.: Quantum structure in cognition. J. Math. Psychol. 53, 314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yukalov, Y.I., Sornette, D.: Quantum probability and quantum decision making. Philos. Trans. R. Soc. A 374, 20150100 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Makowski, M., Piotrowski, E.W., Sładkowski, J.: Do transitive preferences always result in indifferent divisions? Entropy 17, 968 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Puu, T.: Oligopoly: Old Ends-New Means. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  20. Li, H., Du, J., Massar, S.: Continuous-variable quantum games. Phys. Lett. A 306, 73 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Chen, X., Qin, G., Zhou, X., Du, J.: Quantum games of continuous distributed incomplete information. Chin. Phys. Lett. 22, 1033 (2005)

    Article  ADS  Google Scholar 

  22. Li, Y., Qin, G., Zhou, X., Du, J.: The application of asymmetric entangled states in quantum games. Phys. Lett. A 335, 447 (2006)

    Article  ADS  Google Scholar 

  23. Sekiguchi, Y., Sakahara, K., Sato, T.: Uniqueness of Nash equilibria in a quantum Cournot duopoly game. J. Phys. A Math. Theor. 43, 145303 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Wang, X., Yang, X., Miao, L., Zhou, X., Hu, C.: Quantum Stackelberg duopoly of continuous distributed asymmetric information. Chin. Phys. Lett. 24, 3040 (2007)

    Article  ADS  Google Scholar 

  25. Yu, R., Xiao, R.: Quantum Stackelberg duopoly with isoelastic demand function. J. Comput. Inf. Syst. 8, 3643 (2012)

    Google Scholar 

  26. Wang, X., Hu, C.: Quantum Stackelberg duopoly with continuous distributed incomplete information. Chin. Phys. Lett. 29, 120303 (2012)

    Article  ADS  Google Scholar 

  27. Lo, C.F., Kiang, D.: Quantum Bertrand duopoly with differentiated products. Phys. Lett. A 321, 94 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Qin, G., Chen, X., Sun, M., Du, J.: Quantum Bertrand duopoly of incomplete information. J. Phys. A Math. Gen. 38, 4247 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Bertrand, J.: Théorie mathématique de la richesse sociale. Journal des Savants 67, 499 (1883)

    Google Scholar 

  30. Cournot, A.: Recherches sur les Principes Mathématiques de la Théorie des Richesses. Hachette, Paris (1838)

    MATH  Google Scholar 

  31. Peters, H.: Game Theory: A Multi-Leveled Approach. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  32. Fra̧ckiewicz, P.: Remarks on quantum duopoly schemes. Quantum Inf. Process. 15, 121 (2015)

    Article  MathSciNet  Google Scholar 

  33. Iqbal, A., Toor, A.H.: Backwards-induction outcome in a quantum game. Phys. Rev. A 65, 052328 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Merzbacher, E.: Quantum Mechanics, 3rd edn. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  35. Sekiquchi, Y., Sakahara, K., Sato, T.: Existence of equilibria in quantum Bertrand–Edgeworth duopoly game. Quantum Inf. Process. 11, 1371 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the Reviewers for discussion which undoubtedly improved the quality of our work. Work by Piotr Fra̧ckiewicz was supported by the Ministry of Science and Higher Education under the project Iuventus Plus IP2014 010973.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Fra̧ckiewicz.

Additional information

This work was supported by the Ministry of Science and Higher Education in Poland under the project Iuventus Plus IP2014 010973 in the years 2015–2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fra̧ckiewicz, P., Sładkowski, J. Quantum approach to Bertrand duopoly. Quantum Inf Process 15, 3637–3650 (2016). https://doi.org/10.1007/s11128-016-1355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1355-3

Keywords

Navigation