Quantum Information Processing

, Volume 15, Issue 8, pp 3065–3079 | Cite as

Analytical error analysis of Clifford gates by the fault-path tracer method

  • Smitha Janardan
  • Yu Tomita
  • Mauricio Gutiérrez
  • Kenneth R. Brown
Article
Part of the following topical collections:
  1. Quantum Computer Science

Abstract

We estimate the success probability of quantum protocols composed of Clifford operations in the presence of Pauli errors. Our method is derived from the fault-point formalism previously used to determine the success rate of low-distance error correction codes. Here we apply it to a wider range of quantum protocols and identify circuit structures that allow for efficient calculation of the exact success probability and even the final distribution of output states. As examples, we apply our method to the Bernstein–Vazirani algorithm and the Steane [[7,1,3]] quantum error correction code and compare the results to Monte Carlo simulations.

Keywords

Quantum error correction Thresholds Bernstein–Vazirani algorithm Clifford circuits 

References

  1. 1.
    Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Emerson, J., Silva, M., Moussa, O., Ryan, C., Laforest, M., Baugh, J., Cory, D.G., Laflamme, R.: Symmetrized characterization of noisy quantum processes. Science 317, 1893 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Knill, E., Leibfried, D., Reichle, R., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Flammia, S.T., Liu, Y.K.: Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett. 106, 230501 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Flammia, S.T., Gross, D., Liu, Y.K., Eisert, J.: Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14, 095022 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    da Silva, M.P., Landon-Cardinal, O., Poulin, D.: Practical characterization of quantum devices without tomography. Phys. Rev. Lett. 107, 210404 (2011)CrossRefGoogle Scholar
  7. 7.
    Blume-Kohout, R., Gamble, J.K., Nielsen, E., Mizrahi, J., Sterk, J.D., Maunz, P.: Robust, Self-consistent, Closed-form Tomography of Quantum Logic Gates on a Trapped Ion Qubit. arXiv:1310.4492 (2013)
  8. 8.
    Merkel, S.T., Gambetta, J.M., Smolin, J.A., Poletto, S., Córcoles, A.D., Johnson, B.R., Ryan, C.A., Steffen, M.: Self-consistent quantum process tomography. Phys. Rev. A 87, 062119 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Wallman, J., Granade, C., Harper, R., Flammia, S.T.: Estimating the coherence of noise. New J. Phys. 17(11), 113020 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Shabani, A., Kosut, R.L., Mohseni, M., Rabitz, H., Broome, M.A., Almeida, M.P., Fedrizzi, A., White, A.G.: Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett. 106, 100401 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110, 250504 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Anders, S., Briegel, H.J.: Fast simulation of stabilizer circuits using a graph-state representation. Phys. Rev. A 73, 022334 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Magesan, E., Puzzuoli, D., Granade, C.E., Cory, D.G.: Modeling quantum noise for efficient testing of fault-tolerant circuits. Phys. Rev. A 87, 012324 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Gutiérrez, M., Svec, L., Vargo, A., Brown, K.R.: Approximation of realistic errors by Clifford channels and Pauli measurements. Phys. Rev. A 87, 030302 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Gutiérrez, M., Brown, K.R.: Comparison of a quantum error-correction threshold for exact and approximate errors. Phys. Rev. A 91, 022335 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 97 (2006)MathSciNetMATHGoogle Scholar
  19. 19.
    Bernstein, E., Vazirani, U.: Quantum complexity theory, In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing (ACM, New York, NY, USA, 1993), STOC ’93, pp. 11–20Google Scholar
  20. 20.
    Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Tomita, Y., Gutiérrez, M., Kabytayev, C., Brown, K.R., Hutsel, M.R., Morris, A.P., Stevens, K.E., Mohler, G.: Comparison of ancilla preparation and measurement procedures for the Steane [[7,1,3]] code on a model ion-trap quantum computer. Phys. Rev. A 88, 042336 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  23. 23.
    Tomita, Y.: Numerical and Analytical Studies of Quantum Error Correction. Ph.D. thesis, Georgia Institute of Technology (2014)Google Scholar
  24. 24.
    DiVincenzo, D.P., Aliferis, P.: Effective fault-tolerant quantum computation with slow measurements. Phys. Rev. Lett. 98, 220501 (2007)CrossRefMATHGoogle Scholar
  25. 25.
    Aliferis, P., Cross, A.W.: Subsystem fault tolerance with the Bacon-Shor code. Phys. Rev. Lett. 98, 220502 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Walt, S.v d, Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. CiSE 13, 22–30 (2011)Google Scholar
  27. 27.
    Orús, R.: A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Smitha Janardan
    • 1
  • Yu Tomita
    • 1
  • Mauricio Gutiérrez
    • 1
  • Kenneth R. Brown
    • 1
  1. 1.Schools of Chemistry and Biochemistry, Computational Science and Engineering, and PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations