Skip to main content
Log in

Robust quantum spatial search

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size \(O(1{/}\sqrt{\ln N})\) which is exponentially better than quantum walk algorithms for which tolerable error size is only \(O(\ln N{/}\sqrt{N})\). Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  2. Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)

    Article  ADS  Google Scholar 

  3. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennett, C., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 1510 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: Proceedings of 44th IEEE Symposium on Foundations of Computer Science, pp. 200209 (2003)

  6. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of 16th ACM-SIAM SODA, p. 1099 (2005)

  7. Childs, A., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. Childs, A., Goldstone, J.: Spatial search and the Dirac equation. Phys. Rev. A 70, 042312 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Preskill, J.: Reliable quantum computers. Proc. R. Soc. Lond. Ser. A 454, 385 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Foulger, I., Gnutzmann, S., Tanner, G.: Quantum search on graphene lattices. Phys. Rev. Lett. 112, 070504 (2014)

    Article  ADS  Google Scholar 

  11. Foulger, I., Gnutzmann, S., Tanner, G.: Quantum walks and quantum search on graphene lattices. Phys. Rev. A. 91, 062323 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Childs, A., Ge, Y.: Spatial search by continuous-time quantum walks on crystal lattices. Phys. Rev. A 89, 052337 (2014)

    Article  ADS  Google Scholar 

  13. Patel, A., Raghunathan, K.S., Rungta, P.: Quantum random walks do not need a coin toss. Phys. Rev. A 71, 032347 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Patel, A., Rahaman, M.A.: Search on a hypercubic lattice using a quantum random walk. I. \(\text{ d } > 2\). Phys. Rev. A 82, 032330 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Patel, A., Raghunathan, K.S., Rahaman, M.A.: Search on a hypercubic lattice using a quantum random walk. II. d= 2. Phys. Rev. A 82, 032331 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Falk, M.: Quantum search on the spatial grid. arXiv:1303.4127 (2013)

  17. Ambainis, A., Portugal, R., Nahimov, N.: Spatial search on grids with minimum memory. Quant. Inf. Comput. 15, 1233–1247 (2015)

    MathSciNet  Google Scholar 

  18. Boehm, J., Bellec, M., Mortessagne, F., Kuhl, U., Barkhofen, S., Gehler, S., Stockmann, H.J., Foulger, I., Gnutzmann, S., Tanner, G.: Microwave experiments simulating quantum search and directed transport in artificial graphene. Phys. Rev. Lett. 114, 110501 (2015)

    Article  ADS  Google Scholar 

  19. Tulsi, A.: General framework for quantum search algorithms. Phys. Rev. A 86, 042331 (2012)

    Article  ADS  Google Scholar 

  20. Abal, G., Donangelo, R., Marquezino, F.L., Oliveira, A.C., Portugal, R.: Decoherence in search algorithms. arXiv:0912.1523

  21. Li, Y., Ma, L., Zhou, J.: Gate imperfection in the quantum random-walk search algorithm. J. Phys. A 39, 93099319 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Long, G.L., Li, Y.S., Zhang, W.L., Niu, L.: Phase matching in quantum searching. Phys. Lett. A 262, 27 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Hoyer, P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62, 052304 (2000)

    Article  ADS  Google Scholar 

  24. Long, G.L., Li, Y.S., Zhang, W.L., Tu, C.C.: Dominant gate imperfection in Grover’s quantum search algorithm. Phys. Rev. A 61, 042305 (2000)

    Article  ADS  Google Scholar 

  25. Wong, T.G.: Quantum walk search through potential barriers. arXiv:1503.06605

  26. Ambainis, A., Wong, T.G.: Correcting for Potential Barriers in Quantum Walk Search. Quant. Inf. Comput. 15, 1365–1372 (2015)

    MathSciNet  Google Scholar 

  27. Tulsi, A.: Faster quantum walk algorithm for the two-dimensional spatial search. Phys. Rev. A 78, 012310 (2008)

    Article  ADS  MATH  Google Scholar 

  28. Tulsi, A.: Faster quantum searching with almost any diffusion operator. Phys. Rev. A 91, 052307 (2015)

    Article  ADS  Google Scholar 

  29. Ambainis, A., Backurs, A., Nahimovs, N., Ozols, R., Rivosh, A.: Search by quantum walks on two-dimensional grid without amplitude amplification, TQC 2012, Tokyo, LNCS 7582, Springer

  30. Tulsi, A.: Postprocessing for speeding up general quantum search algorithms. Phys. Rev. A 78, 012310 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avatar Tulsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulsi, A. Robust quantum spatial search. Quantum Inf Process 15, 2675–2683 (2016). https://doi.org/10.1007/s11128-016-1322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1322-z

Keywords

Navigation