Quantum Information Processing

, Volume 15, Issue 12, pp 5351–5383 | Cite as

Technologies for trapped-ion quantum information systems

Progress toward scalability with hybrid systems
  • Amira M. Eltony
  • Dorian Gangloff
  • Molu Shi
  • Alexei Bylinskii
  • Vladan Vuletić
  • Isaac L. Chuang
Article

Abstract

Scaling up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit, and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.

Keywords

Ion traps Quantum computation Quantum information Trapped ions Ion–photon interface Graphene Indium tin oxide Cavity cooling Optical trapping Micromirror Motional heating CMOS ion trap Hybrid trap Scalable 

Notes

Acknowledgments

We gratefully acknowledge support from the MQCO Program with funding from IARPA, the Quest program with funding from DARPA, the Air Force Office of Scientific Research MURI on Ultracold Molecules, and the NSF Center for Ultracold Atoms. AME, DG, and AB also gratefully acknowledge the support of the National Science and Engineering Research Council of Canada’s Postgraduate Scholarship program.

References

  1. 1.
    Paul, W., Steinwedel, H.: New mass spectrometer without a magnetic field. Zeitschrift fuer Naturforschung A(8), 448 (1953)ADSGoogle Scholar
  2. 2.
    Cirac, J., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Monroe, C., Meekhof, D., King, B., Itano, W., Wineland, D.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714 (1995). doi:10.1103/PhysRevLett.75.4714 ADSMathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Wineland, D., Monroe, C., Itano, W., Leibfried, D., King, B., Meekhof, D.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103(3), 259 (1998)MATHCrossRefGoogle Scholar
  5. 5.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  6. 6.
    Mintert, F., Wunderlich, C.: Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87(25), 257904 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Ospelkaus, C., Langer, C.E., Amini, J.M., Brown, K.R., Leibfried, D., Wineland, D.J.: Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101(9), 090502 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Ospelkaus, C., Warring, U., Colombe, Y., Brown, K.R., Amini, J.M., Leibfried, D., Wineland, D.J.: Microwave quantum logic gates for trapped ions. Nature 476(7359), 181 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Timoney, N., Baumgart, I., Johanning, M., Varon, A.F., Plenio, M.B., Retzker, A., Wunderlich, C.: Quantum gates and memory using microwave-dressed states. Nature 476(7359), 185 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Barrett, M., Chiaverini, J., Schaetz, T., Britton, J.: Deterministic quantum teleportation of atomic qubits. Nature 803(1982), 802 (2004)Google Scholar
  11. 11.
    Riebe, M., Chwalla, M., Benhelm, J., Häffner, H., Hänsel, W., Roos, C.F., Blatt, R.: Quantum teleportation with atoms: quantum process tomography. New J. Phys. 9(7), 211 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Olmschenk, S., Matsukevich, D., Maunz, P.: Quantum teleportation between distant matter qubits. Science 323, 486 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Stute, A., Casabone, B., Brandstätter, B., Friebe, K., Northup, T.E., Blatt, R.: Quantum-state transfer from an ion to a photon. Nat. Photonics 7(3), 219 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Kim, K., Chang, M.S., Korenblit, S., Islam, R., Edwards, E.E., Freericks, J.K., Lin, G.D., Duan, L.M., Monroe, C.: Quantum simulation of frustrated Ising spins with trapped ions. Nature 465(7298), 590 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Barreiro, J.T., Müller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature 470(7335), 486 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Lanyon, B., Hempel, C., Nigg, D., Müller, M.: Universal digital quantum simulation with trapped ions. Science 334, 57 (2011)Google Scholar
  17. 17.
    Gerritsma, R., Lanyon, B.P., Kirchmair, G., Zähringer, F., Hempel, C., Casanova, J., García-Ripoll, J.J., Solano, E., Blatt, R., Roos, C.F.: Quantum simulation of the Klein paradox with trapped ions. Phys. Rev. Lett. 106(6), 060503 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Britton, J.W., Sawyer, B.C., Keith, A.C., Wang, C.C.J., Freericks, J.K., Uys, H., Biercuk, M.J., Bollinger, J.J.: Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484(7395), 489 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Blatt, R., Roos, C.F.: Quantum simulations with trapped ions. Nat. Phys. 8(4), 277 (2012)CrossRefGoogle Scholar
  20. 20.
    Islam, R., Senko, C., Campbell, W., Korenblit, S.: Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340, 583 (2013)Google Scholar
  21. 21.
    Chiaverini, J., Britton, J., Leibfried, D., Knill, E., Barrett, M.D., Blakestad, R.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Schaetz, T., Wineland, D.J.: Implementation of the semiclassical quantum Fourier transform in a scalable system. Science 308(5724), 997 (2005)ADSMathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Schindler, P., Nigg, D., Monz, T., Barreiro, J.T., Martinez, E., Wang, S.X., Quint, S., Brandl, M.F., Nebendahl, V., Roos, C.F., Chwalla, M., Hennrich, M., Blatt, R.: A quantum information processor with trapped ions. New J. Phys. 15(12), 123012 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer. Nature 421(6918), 48 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Brickman, K.A., Haljan, P., Lee, P., Acton, M., Deslauriers, L., Monroe, C.: Implementation of Grover’s quantum search algorithm in a scalable system. Phys. Rev. A 72(5), 050306 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Schindler, P., Barreiro, J.T., Monz, T., Nebendahl, V., Nigg, D., Chwalla, M., Hennrich, M., Blatt, R.: Experimental repetitive quantum error correction. Science 332(6033), 1059 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    DiVincenzo, D.: Quantum computation. Science 270(5234), 255 (1995)ADSMathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48(9–11), 771 (2000)MATHCrossRefGoogle Scholar
  28. 28.
    Monroe, C., Meekhof, D.M., King, B.E.: Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75(22), 4011 (1995)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    King, B., Wood, C., Myatt, C., Turchette, Q., Leibfried, D., Itano, W., Monroe, C., Wineland, D.: Cooling the collective motion of trapped ions to initialize a quantum register. Phys. Rev. Lett. 81(7), 1525 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    Roos, C., Zeiger, T., Rohde, H., Nägerl, H., Eschner, J., Leibfried, D., Schmidt-Kaler, F., Blatt, R.: Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys. Rev. Lett. 83(23), 4713 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Nägerl, H., Leibfried, D., Rohde, H., Thalhammer, G., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Laser addressing of individual ions in a linear ion trap. Phys. Rev. A 60(1), 145 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Monroe, C., Meekhof, D.D., King, B.B., Itano, W., Wineland, D.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714 (1995)ADSMathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J., Monroe, C.: Experimental entanglement of four particles. Nature 404(6775), 256 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422(6930), 412 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422(6930), 408 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Monz, T., Kim, K., Hänsel, W., Riebe, M., Villar, A., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102(4), 040501 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Rowe, M.A., Kielpinski, D., Meyer, V., Sackett, C.A.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409(6822), 791 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    Myerson, A., Szwer, D., Webster, S., Allcock, D., Curtis, M., Imreh, G., Sherman, J., Stacey, D., Steane, A., Lucas, D.: High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett. 100(20), 2 (2008)CrossRefGoogle Scholar
  39. 39.
    Chiaverini, J., Blakestad, R.B., Britton, J., Jost, J.D., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Surface-electrode architecture for ion-trap quantum information processing. Quantum Inf. Comput. 5(6), 419 (2005)MathSciNetMATHGoogle Scholar
  40. 40.
    Seidelin, S., Chiaverini, J., Reichle, R., Bollinger, J., Leibfried, D., Britton, J., Wesenberg, J., Blakestad, R., Epstein, R., Hume, D., Itano, W., Jost, J., Langer, C., Ozeri, R., Shiga, N., Wineland, D.: Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96(25), 253003 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Brown, K., Clark, R., Labaziewicz, J., Richerme, P., Leibrandt, D., Chuang, I.: Loading and characterization of a printed-circuit-board atomic ion trap. Phys. Rev. A 75(1), 015401 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Eltony, A.M., Park, H.G., Wang, S.X., Kong, J., Chuang, I.L.: Motional heating in a graphene-coated ion trap. Nano Lett. 14(10), 5712 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Wang, S.X., Ge, Y., Labaziewicz, J., Dauler, E., Berggren, K., Chuang, I.L.: Superconducting microfabricated ion traps. Appl. Phys. Lett. 97(24), 244102 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Eltony, A.M., Wang, S.X., Akselrod, G.M., Herskind, P.F., Chuang, I.L.: Transparent ion trap with integrated photodetector. Appl. Phys. Lett. 102(05), 054106 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Kim, T.H., Herskind, P.F., Chuang, I.L.: Surface-electrode ion trap with integrated light source. Appl. Phys. Lett. 98(21), 214103 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Cetina, M., Bylinskii, A., Karpa, L., Gangloff, D., Beck, K.M., Ge, Y., Scholz, M., Grier, A.T., Chuang, I., Vuletić, V.: One-dimensional array of ion chains coupled to an optical cavity. New J. Phys. 15(5), 053001 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    Turchette, Q.A., King, B.E., Leibfried, D., Meekhof, D.M., Myatt, C.J., Rowe, M.A., Sackett, C.A., Wood, C.S., Itano, W.M., Monroe, C., Wineland, D.J.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61(06), 063418 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    DeVoe, R., Kurtsiefer, C.: Experimental study of anomalous heating and trap instabilities in a microscopic 137 Ba ion trap. Phys. Rev. A 65(6), 063407 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    Deslauriers, L., Olmschenk, S., Stick, D., Hensinger, W., Sterk, J., Monroe, C.: Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97(10), 103007 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    Labaziewicz, J., Ge, Y., Antohi, P., Leibrandt, D., Brown, K., Chuang, I.: Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100(01), 013001 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    Labaziewicz, J., Ge, Y., Leibrandt, D., Wang, S., Shewmon, R., Chuang, I.: Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101(18), 180602 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    Deslauriers, L., Haljan, P., Lee, P., Brickman, K.A., Blinov, B., Madsen, M., Monroe, C.: Zero-point cooling and low heating of trapped \({}^{111}{\rm Cd}^{+}\) ions. Phys. Rev. A 70(04), 043408 (2004)Google Scholar
  53. 53.
    Dubessy, R., Coudreau, T., Guidoni, L.: Electric field noise above surfaces: a model for heating-rate scaling law in ion traps. Phys. Rev. A 80(03), 031402 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Safavi-Naini, A., Rabl, P., Weck, P.F., Sadeghpour, H.R.: Microscopic model of electric-field-noise heating in ion traps. Phys. Rev. A 84(02), 023412 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    Low, G.H., Herskind, P., Chuang, I.: Finite-geometry models of electric field noise from patch potentials in ion traps. Phys. Rev. A 84(05), 053425 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    Daniilidis, N., Narayanan, S., Möller, S.A., Clark, R., Lee, T.E., Leek, P.J., Wallraff, A., Schulz, S., Schmidt-Kaler, F., Häffner, H.: Fabrication and heating rate study of microscopic surface electrode ion traps. New J. Phys. 14(7), 079504 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    Bruzewicz, C.D., Sage, J.M., Chiaverini, J.: Measurement of ion motional heating rates over a range of trap frequencies and temperatures. Phys. Rev. A 91(4), 041402 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    Hite, D., Colombe, Y., Wilson, A., Brown, K., Warring, U., Jördens, R., Jost, J., McKay, K., Pappas, D., Leibfried, D., Wineland, D.: 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109(10), 103001 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    Hite, D., Colombe, Y., Wilson, A., Allcock, D., Leibfried, D., Wineland, D., Pappas, D.: Surface science for improved ion traps. MRS Bull. 38(10), 826 (2013)CrossRefGoogle Scholar
  60. 60.
    Daniilidis, N., Gerber, S., Bolloten, G., Ramm, M., Ransford, A., Ulin-Avila, E., Talukdar, I., Häffner, H.: Surface noise analysis using a single-ion sensor. Phys. Rev. B 89(24), 245435 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    Chiaverini, J., Sage, J.M.: Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range. Phys. Rev. A 89(1), 012318 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339(6124), 1169 (2013)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Tian, L., Rabl, P., Blatt, R., Zoller, P.: Interfacing quantum-optical and solid-state qubits. Phys. Rev. Lett. 92(24), 247902 (2004)ADSCrossRefGoogle Scholar
  64. 64.
    Kielpinski, D., Kafri, D., Woolley, M.J., Milburn, G.J., Taylor, J.M.: Quantum interface between an electrical circuit and a single atom. Phys. Rev. Lett. 108(13), 130504 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    Schuster, D.I., Bishop, L.S., Chuang, I.L., DeMille, D., Schoelkopf, R.J.: Cavity QED in a molecular ion trap. Phys. Rev. A 83(1), 012311 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    Cirac, J., Zoller, P.: A scalable quantum computer with ions in an array of microtraps. Nature 404(6778), 579 (2000)ADSCrossRefGoogle Scholar
  67. 67.
    Hensinger, W.K., Olmschenk, S., Stick, D., Hucul, D., Yeo, M., Acton, M., Deslauriers, L., Monroe, C., Rabchuk, J.: T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88(3), 034101 (2006)ADSCrossRefGoogle Scholar
  68. 68.
    Wang, X., Tabakman, S.M., Dai, H.: Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130(26), 8152 (2008)CrossRefGoogle Scholar
  69. 69.
    Sutter, E., Albrecht, P., Camino, F.E., Sutter, P.: Monolayer graphene as ultimate chemical passivation layer for arbitrarily shaped metal surfaces. Carbon 48(15), 4414 (2010)CrossRefGoogle Scholar
  70. 70.
    Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S.Y., Edgeworth, J., Li, X., Magnuson, C.W., Velamakanni, A., Piner, R.D., Kang, J., Park, J., Ruoff, R.S.: Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5(2), 1321 (2011)CrossRefGoogle Scholar
  71. 71.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004)ADSCrossRefGoogle Scholar
  72. 72.
    Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., Ruoff, R.S.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8(11), 3582 (2008)ADSCrossRefGoogle Scholar
  75. 75.
    Bangert, U., Gass, M.H., Bleloch, A.L., Nair, R.R., Eccles, J.: Nanotopography of graphene. Phys. Status Solidi A 206(9), 2115 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    Kimble, H.J.: The quantum internet. Nature 453(7198), 1023 (2008)ADSCrossRefGoogle Scholar
  77. 77.
    Luo, L., Hayes, D., Manning, T.A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Sterk, J.D., Monroe, C.: Protocols and techniques for a scalable atom-photon quantum network. Fortschr. Phys. 57(11–12), 1133 (2009)MATHCrossRefGoogle Scholar
  78. 78.
    Maunz, P., Olmschenk, S., Hayes, D., Matsukevich, D., Duan, L.M., Monroe, C.: Heralded quantum gate between remote quantum memories. Phys. Rev. Lett. 102(25), 250502 (2009)ADSCrossRefGoogle Scholar
  79. 79.
    Harlander, M., Brownnutt, M., Hnsel, W., Blatt, R.: Trapped-ion probing of light-induced charging effects on dielectrics. New J. Phys. 12(9), 93035 (2010)CrossRefGoogle Scholar
  80. 80.
    Wang, S.X., Low, G.Hao, Lachenmyer, N.S., Ge, Y., Herskind, P.F., Chuang, I.L.: Laser-induced charging of microfabricated ion traps. J. Appl. Phys. 110(10), 104901 (2011)ADSCrossRefGoogle Scholar
  81. 81.
    Sterk, J., Luo, L., Manning, T., Maunz, P., Monroe, C.: Photon collection from a trapped ion-cavity system. Phys. Rev. A 85(6), 062308 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    Jechow, A., Streed, E.W., Norton, B.G., Petrasiunas, M.J., Kielpinski, D.: Wavelength-scale imaging of trapped ions using a phase Fresnel lens. Opt. Lett. 36(8), 1371 (2011)ADSCrossRefGoogle Scholar
  83. 83.
    Streed, E., Norton, B., Jechow, A., Weinhold, T., Kielpinski, D.: Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106(1), 010502 (2011)ADSCrossRefGoogle Scholar
  84. 84.
    Herskind, P.F., Wang, S.X., Shi, M., Ge, Y., Cetina, M., Chuang, I.L.: Microfabricated surface ion trap on a high-finesse optical mirror. Opt. Lett. 36(16), 3045 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    Merrill, T.J., Volin, C., Landgren, D., Amini, J.M., Wright, K., Doret, S.Charles, Pai, C.S., Hayden, H., Killian, T., Faircloth, D., Brown, K.R., Harter, A.W., Slusher, R.E., Merrill, J.T.: Demonstration of integrated microscale optics in surface-electrode ion traps. New J. Phys. 13(10), 103005 (2011)CrossRefGoogle Scholar
  86. 86.
    VanDevender, A., Colombe, Y., Amini, J., Leibfried, D., Wineland, D.: Efficient fiber optic detection of trapped ion fluorescence. Phys. Rev. Lett. 105(02), 023001 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    Mehta, K.K., Bruzewicz, C.D., McConnell, R., Ram, R.J., Sage, J.M., Chiaverini, J.: Integrated optical addressing of an ion qubit. arXiv preprint arXiv:1510.05618 (2015)
  88. 88.
    Guthöhrlein, G.R., Keller, M., Hayasaka, K., Lange, W., Walther, H.: A single ion as a nanoscopic probe of an optical field. Nature 414(6859), 49 (2001)ADSCrossRefGoogle Scholar
  89. 89.
    Mundt, A., Kreuter, A., Becher, C., Leibfried, D., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Coupling a single atomic quantum bit to a high finesse optical cavity. Phys. Rev. Lett. 89(10), 103001 (2002)ADSCrossRefGoogle Scholar
  90. 90.
    Stute, A., Casabone, B., Brandstätter, B., Habicher, D., Barros, H.G., Schmidt, P.O., Northup, T.E., Blatt, R.: Toward an ion-photon quantum interface in an optical cavity. Appl. Phys. B 107(4), 1145 (2012)ADSCrossRefGoogle Scholar
  91. 91.
    Herskind, P.F., Dantan, A., Marler, J.P., Albert, M., Drewsen, M.: Realization of collective strong coupling with ion Coulomb crystals in an optical cavity. Nat. Phys. 5(7), 494 (2009)CrossRefGoogle Scholar
  92. 92.
    Steiner, M., Meyer, H.M., Deutsch, C., Reichel, J., Köhl, M.: Single ion coupled to an optical fiber cavity. Phys. Rev. Lett. 110(4), 043003 (2013)ADSCrossRefGoogle Scholar
  93. 93.
    Tanji-Suzuki, H., Leroux, I.: Interaction between atomic ensembles and optical resonators: classical description. Adv. Atomic Mol. Opt. Phys. 60, 201 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    Siegman, A.E.: Lasers. University Science Books, Mill Valley, CA (1986)Google Scholar
  95. 95.
    Brady, G.R., Ellis, A.R., Moehring, D.L., Stick, D., Highstrete, C., Fortier, K.M., Blain, M.G., Haltli, R.A., Cruz-Cabrera, A.A., Briggs, R.D., Wendt, J.R., Carter, T.R., Samora, S., Kemme, S.A.: Integration of fluorescence collection optics with a microfabricated surface electrode ion trap. Appl. Phys. B 103(4), 801 (2011)ADSCrossRefGoogle Scholar
  96. 96.
    Brewer, R., DeVoe, R., Kallenbach, R.: Planar ion microtraps. Phys. Rev. A 46(11), R6781 (1992)ADSCrossRefGoogle Scholar
  97. 97.
    Kim, T.H., Herskind, P.F., Kim, T., Kim, J., Chuang, I.L.: Surface-electrode point Paul trap. Phys. Rev. A 82(4), 043412 (2010)ADSCrossRefGoogle Scholar
  98. 98.
    Berkeland, D., Miller, J.: Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83(10), 5025 (1998)ADSCrossRefGoogle Scholar
  99. 99.
    Herskind, P.F., Dantan, A., Albert, M., Marler, J.P., Drewsen, M.: Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision. J. Phys. B At. Mol. Opt. Phys. 42(15), 154008 (2009)ADSCrossRefGoogle Scholar
  100. 100.
    Stute, A., Casabone, B., Schindler, P., Monz, T., Schmidt, P.O., Brandstätter, B., Northup, T.E., Blatt, R.: Tunable ion-photon entanglement in an optical cavity. Nature 485(7399), 482 (2012)ADSCrossRefGoogle Scholar
  101. 101.
    Takahashi, H., Wilson, A., Riley-Watson, A., Oručević, F., Seymour-Smith, N., Keller, M., Lange, W.: An integrated fiber trap for single-ion photonics. New J. Phys. 15(5), 053011 (2013)ADSCrossRefGoogle Scholar
  102. 102.
    Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450(7167), 272 (2007)ADSCrossRefGoogle Scholar
  103. 103.
    Brandstätter, B., McClung, A., Schüppert, K., Casabone, B., Friebe, K., Stute, A., Schmidt, P.O., Deutsch, C., Reichel, J., Blatt, R., Northup, T.E.: Integrated fiber-mirror ion trap for strong ion-cavity coupling. Rev. Sci. Instrum. 84(12), 123104 (2013)ADSCrossRefGoogle Scholar
  104. 104.
    Noek, R., Knoernschild, C., Migacz, J., Kim, T., Maunz, P., Merrill, T., Hayden, H., Pai, C.S., Kim, J.: Multiscale optics for enhanced light collection from a point source. Opt. Lett. 35(14), 2460 (2010)ADSCrossRefGoogle Scholar
  105. 105.
    Kim, H., Pique, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B.: Indium tin oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 74(23), 3444 (1999)ADSCrossRefGoogle Scholar
  106. 106.
    McKay, K.S., Kim, J., Hogue, H.H.: Enhanced quantum efficiency of the visible light photon counter in the ultraviolet wavelengths. Opt. Express 17(9), 7458 (2009)ADSCrossRefGoogle Scholar
  107. 107.
    Hucul, D., Inlek, I.V., Vittorini, G., Crocker, C., Debnath, S., Clark, S.M., Monroe, C.: Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11(1), 37 (2014)CrossRefGoogle Scholar
  108. 108.
    Shu, G., Dietrich, M.R., Kurz, N., Blinov, B.B.: Trapped ion imaging with a high numerical aperture spherical mirror. J. Phys. B At. Mol. Opt. Phys. 42(15), 154005 (2009)ADSCrossRefGoogle Scholar
  109. 109.
    Shu, G., Chou, C.K., Kurz, N., Dietrich, M.R., Blinov, B.B.: Efficient fluorescence collection and ion imaging with the tack ion trap. J. Opt. Soc. Am. B 28(12), 2865 (2011)ADSCrossRefGoogle Scholar
  110. 110.
    Maiwald, R., Golla, A., Fischer, M., Bader, M., Heugel, S., Chalopin, B., Sondermann, M., Leuchs, G.: Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A 86(4), 043431 (2012)ADSCrossRefGoogle Scholar
  111. 111.
    Hunger, D., Steinmetz, T., Colombe, Y., Deutsch, C., Hänsch, T.W., Reichel, J.: A fiber Fabry–Perot cavity with high finesse. New J. Phys. 12(6), 065038 (2010)ADSCrossRefGoogle Scholar
  112. 112.
    Thompson, R.J., Rempe, G., Kimble, H.J.: Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68(8), 1132 (1992)ADSCrossRefGoogle Scholar
  113. 113.
    Keller, M., Lange, B., Hayasaka, K.K., Lange, W., Walther, H.: Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431(28), 1075 (2004)ADSCrossRefGoogle Scholar
  114. 114.
    Barros, H.G., Stute, A., Northup, T.E., Russo, C., Schmidt, P.O., Blatt, R.: Deterministic single-photon source from a single ion. New J. Phys. 11(10), 103004 (2009)ADSCrossRefGoogle Scholar
  115. 115.
    Albert, M., Dantan, A.A., Drewsen, M.: Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals. Nat. Photonics 5(10), 633 (2011)ADSCrossRefGoogle Scholar
  116. 116.
    Home, J.P., Hanneke, D., Jost, J.D., Amini, J.M., Leibfried, D., Wineland, D.J.: Complete methods set for scalable ion trap quantum information processing. Science 325(5945), 1227 (2009)ADSMathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Cetina, M., Grier, A., Campbell, J., Chuang, I., Vuletić, V.: Bright source of cold ions for surface-electrode traps. Phys. Rev. A 76(041401), 041401(R) (2007)ADSCrossRefGoogle Scholar
  118. 118.
    Sage, J.M., Kerman, A.J., Chiaverini, J.: Loading of a surface-electrode ion trap from a remote, precooled source. Phys. Rev. A 86(1), 013417 (2012)ADSCrossRefGoogle Scholar
  119. 119.
    Lamata, L., Leibrandt, D., Chuang, I., Cirac, J., Lukin, M., Vuletić, V., Yelin, S.: Ion crystal transducer for strong coupling between single ions and single photons. Phys. Rev. Lett. 107(3), 030501 (2011)ADSCrossRefGoogle Scholar
  120. 120.
    Horak, P., Hechenblaikner, G., Gheri, K., Stecher, H., Ritsch, H.: Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett. 79(25), 4974 (1997)ADSCrossRefGoogle Scholar
  121. 121.
    Vuletić, V., Chu, S.: Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84(17), 3787 (2000)ADSCrossRefGoogle Scholar
  122. 122.
    Hänsch, T., Schawlow, A.: Cooling of gases by laser radiation. Opt. Commun. 13(1), 68 (1975)ADSCrossRefGoogle Scholar
  123. 123.
    Leibrandt, D., Labaziewicz, J., Vuletić, V., Chuang, I.: Cavity sideband cooling of a single trapped ion. Phys. Rev. Lett. 103(10), 103001 (2009)ADSCrossRefGoogle Scholar
  124. 124.
    Vuletić, V., Chan, H., Black, A.: Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering. Phys. Rev. A 64(3), 033405 (2001)ADSCrossRefGoogle Scholar
  125. 125.
    Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P.W.H., Rempe, G.: Cavity cooling of a single atom. Nature 428(6978), 50 (2004)ADSCrossRefGoogle Scholar
  126. 126.
    Nußmann, S., Hijlkema, M., Weber, B., Rohde, F., Rempe, G., Kuhn, A.: Submicron positioning of single atoms in a microcavity. Phys. Rev. Lett. 95(17), 173602 (2005)ADSCrossRefGoogle Scholar
  127. 127.
    Fortier, K., Kim, S., Gibbons, M., Ahmadi, P., Chapman, M.: Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98(23), 233601 (2007)ADSCrossRefGoogle Scholar
  128. 128.
    Chan, H., Black, A., Vuletić, V.: Observation of collective-emission-induced cooling of atoms in an optical cavity. Phys. Rev. Lett. 90(6), 063003 (2003)ADSCrossRefGoogle Scholar
  129. 129.
    Black, A., Chan, H., Vuletić, V.: Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering. Phys. Rev. Lett. 91(20), 203001 (2003)ADSCrossRefGoogle Scholar
  130. 130.
    Shi, M., Herskind, P.F., Drewsen, M., Chuang, I.L.: Microwave quantum logic spectroscopy and control of molecular ions. New J. Phys. 15(11), 113019 (2013)ADSCrossRefGoogle Scholar
  131. 131.
    Metodi, T., Thaker, D., Cross, A.: A quantum logic array microarchitecture: scalable quantum data movement and computation. In: 38th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 305–318 (2005)Google Scholar
  132. 132.
    Grimm, R., Weidemüller, M., Ovchinnikov, Y.B.: Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95 (2000)ADSCrossRefGoogle Scholar
  133. 133.
    Schneider, C., Enderlein, M., Huber, T., Schaetz, T.: Optical trapping of an ion. Nat. Photonics 4(11), 772 (2010)ADSCrossRefGoogle Scholar
  134. 134.
    Linnet, R.B., Leroux, I.D., Marciante, M., Dantan, A., Drewsen, M.: Pinning an ion with an intracavity optical lattice. Phys. Rev. Lett. 109(23), 233005 (2012)ADSCrossRefGoogle Scholar
  135. 135.
    Karpa, L., Bylinskii, A., Gangloff, D., Cetina, M., Vuletić, V.: Suppression of ion transport due to long-lived subwavelength localization by an optical lattice. Phys. Rev. Lett. 111(16), 163002 (2013)ADSCrossRefGoogle Scholar
  136. 136.
    Huber, T., Lambrecht, A., Schmidt, J., Karpa, L., Schaetz, T.: A far-off-resonance optical trap for a Ba(+) ion. Nat. Commun. 5, 5587 (2014)ADSCrossRefGoogle Scholar
  137. 137.
    Enderlein, M., Huber, T., Schneider, C., Schaetz, T.: Single ions trapped in a one-dimensional optical lattice. Phys. Rev. Lett. 109(23), 233004 (2012)ADSCrossRefGoogle Scholar
  138. 138.
    Savard, T., OHara, K., Thomas, J.: Laser-noise-induced heating in far-off resonance optical traps. Phys. Rev. A 56(2), R1095 (1997)ADSCrossRefGoogle Scholar
  139. 139.
    Bylinskii, A., Gangloff, D., Vuletić, V.: Tuning friction atom-by-atom in an ion-crystal simulator. Science 348(6239), 1115 (2015). doi:10.1126/science.1261422 ADSCrossRefGoogle Scholar
  140. 140.
    Britton, J., Leibfried, D., Beall, J.A., Blakestad, R.B., Wesenberg, J.H., Wineland, D.J.: Scalable arrays of rf Paul traps in degenerate Si. Appl. Phys. Lett. 95(17), 173102 (2009)ADSCrossRefGoogle Scholar
  141. 141.
    Chen, C.Y.: Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286(5442), 1139 (1999). doi:10.1126/science.286.5442.1139 CrossRefGoogle Scholar
  142. 142.
    Rushton, J.A., Aldous, M., Himsworth, M.D.: Contributed review: the feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology. Rev. Sci. Instrum. 85(12), 121501 (2014)ADSCrossRefGoogle Scholar
  143. 143.
    Cetina, M., Grier, A.T., Vuletić, V.: Micromotion-induced limit to atom-ion sympathetic cooling in Paul traps. Phys. Rev. Lett. 109(25), 253201 (2012)ADSCrossRefGoogle Scholar
  144. 144.
    Daley, A., Fedichev, P., Zoller, P.: Single-atom cooling by superfluid immersion: a nondestructive method for qubits. Phys. Rev. A 69(2), 022306 (2004)ADSCrossRefGoogle Scholar
  145. 145.
    Zipkes, C., Palzer, S., Sias, C., Köhl, M.: A trapped single ion inside a Bose–Einstein condensate. Nature 464(7287), 388 (2010)ADSCrossRefGoogle Scholar
  146. 146.
    Idziaszek, Z., Calarco, T., Zoller, P.: Controlled collisions of a single atom and an ion guided by movable trapping potentials. Phys. Rev. A 76(3), 033409 (2007)ADSCrossRefGoogle Scholar
  147. 147.
    Jaksch, D., Zoller, P.: The cold atom Hubbard toolbox. Ann. Phys. 315(1), 52 (2005)ADSMATHCrossRefGoogle Scholar
  148. 148.
    Bakr, W.S., Gillen, J.I., Peng, A., Fölling, S., Greiner, M.: A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462(7269), 74 (2009)ADSCrossRefGoogle Scholar
  149. 149.
    Doerk, H., Idziaszek, Z., Calarco, T.: Atom-ion quantum gate. Phys. Rev. A 81(1), 012708 (2010)ADSCrossRefGoogle Scholar
  150. 150.
    Grier, A., Cetina, M., Oručević, F., Vuletić, V.: Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102(22), 223201 (2009)ADSCrossRefGoogle Scholar
  151. 151.
    Leibrandt, D., Labaziewicz, J.: Demonstration of a scalable, multiplexed ion trap for quantum information processing. Quantum Inf. Comput. 9(11), 901 (2009)Google Scholar
  152. 152.
    Stick, D., Fortier, K.M., Haltli, R., Highstrete, C., Moehring, D.L., Tigges, C., Blain, M.G.: Demonstration of a microfabricated surface electrode ion trap. arXiv:1008.0990 (2010)
  153. 153.
    Britton, J.: Microfabrication techniques for trapped ion quantum information processing. Ph.D., University of Colorado at Boulder (2008)Google Scholar
  154. 154.
    Allcock, D.T.C., Harty, T.P., Janacek, H.A., Linke, N.M., Ballance, C.J., Steane, A.M., Lucas, D.M., Jarecki, R.L., Habermehl, S.D., Blain, M.G., Stick, D., Moehring, D.L.: Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap. Appl. Phys. B 107(4), 913 (2011)ADSCrossRefGoogle Scholar
  155. 155.
    Wilpers, G., See, P., Gill, P., Sinclair, A.G.: A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. Nat. Nanotechnol. 7(9), 572 (2012)ADSCrossRefGoogle Scholar
  156. 156.
    Wright, K., Amini, J.M., Faircloth, D.L., Volin, C., Doret, S.Charles, Hayden, H., Pai, C.S., Landgren, D.W., Denison, D., Killian, T., Slusher, R.E., Harter, A.W.: Reliable transport through a microfabricated X -junction surface-electrode ion trap. New J. Phys. 15(3), 033004 (2013)ADSCrossRefGoogle Scholar
  157. 157.
    Sterling, R.C., Rattanasonti, H., Weidt, S., Lake, K., Srinivasan, P., Webster, S.C., Kraft, M., Hensinger, W.K.: Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip. Nat. Commun. 5, 3637 (2014)ADSCrossRefGoogle Scholar
  158. 158.
    Niedermayr, M., Lakhmanskiy, K., Kumph, M., Partel, S., Edlinger, J., Brownnutt, M., Blatt, R.: Cryogenic surface ion trap based on intrinsic silicon. New J. Phys. 16(11), 113068 (2014)ADSCrossRefGoogle Scholar
  159. 159.
    Mehta, K.K., Eltony, A.M., Bruzewicz, C.D., Chuang, I.L., Ram, R.J., Sage, J.M., Chiaverini, J.: Ion traps fabricated in a CMOS foundry. Appl. Phys. Lett. 105(4), 044103 (2014)ADSCrossRefGoogle Scholar
  160. 160.
    Field, R.M., Lary, J., Cohn, J., Paninski, L., Shepard, K.L.: A low-noise, single-photon avalanche diode in standard \(0.13\,\mu {\rm m}\) complementary metal-oxide-semiconductor process. Appl. Phys. Lett. 97(21), 211111 (2010)Google Scholar
  161. 161.
    Orcutt, J.S., Moss, B., Sun, C., Leu, J., Georgas, M., Shainline, J., Zgraggen, E., Li, H., Sun, J., Weaver, M., Urošević, S., Popović, M., Ram, R.J., Stojanović, V.: Open foundry platform for high-performance electronic-photonic integration. Opt. Express 20(11), 12222 (2012)ADSCrossRefGoogle Scholar
  162. 162.
    André, A., DeMille, D., Doyle, J.M., Lukin, M.D., Maxwell, S.E., Rabl, P., Schoelkopf, R.J., Zoller, P.: A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys. 2(9), 636 (2006)CrossRefGoogle Scholar
  163. 163.
    Brown, K.R., Wilson, A.C., Colombe, Y., Ospelkaus, C., Meier, A.M., Knill, E., Leibfried, D., Wineland, D.J.: Single-qubit-gate error below \(10^{-4}\) in a trapped ion. Phys. Rev. A 84(3), 030303 (2011)ADSCrossRefGoogle Scholar
  164. 164.
    Warring, U., Ospelkaus, C., Colombe, Y., Brown, K., Amini, J., Carsjens, M., Leibfried, D., Wineland, D.: Techniques for microwave near-field quantum control of trapped ions. Phys. Rev. A 87(1), 013437 (2013)ADSCrossRefGoogle Scholar
  165. 165.
    Allcock, D.T.C., Harty, T.P., Ballance, C.J., Keitch, B.C., Linke, N.M., Stacey, D.N., Lucas, D.M.: A microfabricated ion trap with integrated microwave circuitry. Appl. Phys. Lett. 102(4), 044103 (2013)ADSCrossRefGoogle Scholar
  166. 166.
    Weidt, S., Randall, J., Webster, S.C., Standing, E.D., Rodriguez, A., Webb, A.E., Lekitsch, B., Hensinger, W.K.: Ground-State cooling of a trapped ion using long-wavelength radiation. Phys. Rev. Lett. 115(1), 013002 (2015)ADSCrossRefGoogle Scholar
  167. 167.
    Schmied, R., Roscilde, T., Murg, V., Porras, D., Cirac, J.I.: Quantum phases of trapped ions in an optical lattice. New J. Phys. 10(4), 045017 (2008)ADSCrossRefGoogle Scholar
  168. 168.
    Bermudez, A., Schaetz, T., Porras, D.: Synthetic gauge fields for vibrational excitations of trapped ions. Phys. Rev. Lett. 107(15), 150501 (2011)ADSCrossRefGoogle Scholar
  169. 169.
    Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature 484(7393), 195 (2012)ADSCrossRefGoogle Scholar
  170. 170.
    Orcutt, J.S., Khilo, A., Holzwarth, C.W., Popović, M.A., Li, H., Sun, J., Bonifield, T., Hollingsworth, R., Kärtner, F.X., Smith, H.I., Stojanović, V., Ram, R.J.: Nanophotonic integration in state-of-the-art CMOS foundries. Opt. Express 19(3), 2335 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Amira M. Eltony
    • 1
  • Dorian Gangloff
    • 1
  • Molu Shi
    • 1
  • Alexei Bylinskii
    • 1
  • Vladan Vuletić
    • 1
  • Isaac L. Chuang
    • 1
  1. 1.Research Laboratory of Electronics, Department of Physics, Center for Ultracold AtomsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations