Abstract
We analyze the performance of two quantum-state-transfer Hamiltonians in the presence of diagonal and off-diagonal disorders, and in terms of different measures. The first Hamiltonian pertains to a fully engineered chain, and the second to a chain with modified boundary couplings. The task is to find which Hamiltonian is the most robust to given levels of disorder and irrespective of the input state. In this respect, it is shown that the performances of the two protocols are approximately equivalent.
This is a preview of subscription content, access via your institution.







Notes
Strictly speaking, for the spin-analogue Hamiltonian one does not need the assumption for the chain to be initially prepared in the ground (vacuum) state. State transfer is expected to take place irrespective of the initial state of the chain, provided that the input spin (site) is initially decorrelated from the rest of the chain (e.g., see chapter 2 in [1]). The main reason is that the evolution operator at the transfer time reduces to a permutation (up perhaps to an unimportant global phase).
References
Nikolopoulos, G.M., Jex, I. (eds.): Quantum State Transfer and Network Engineering. Quantum Science and Technology, Springer, Heidelberg (2014)
Nikolopoulos, G.M., Petrosyan, D., Lambropoulos, P.: Electron wavepacket propagation in a chain of coupled quantum dots. J. Phys. Condens. Matter 16, 4991–5002 (2004)
Nikolopoulos, G.M., Petrosyan, D., Lambropoulos, P.: Coherent electron wavepacket propagation and entanglement in array of coupled quantum dots. Europhys. Lett. 65, 297–303 (2004)
Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)
Banchi, L., Apollaro, T.J.G., Cuccoli, A., Vaia, R., Verrucchi, P.: Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems. Phys. Rev. A 82, 052321 (2010)
Banchi, L., Apollaro, T.J.G., Cuccoli, A., Vaia, R., Verrucchi, P.: Long quantum channels for high-quality entanglement transfer. New J. Phys. 13, 123006 (2011)
Banchi, L., Bayat, A., Verrucchi, P., Bose, S.: Nonperturbative entangling gates between distant qubits using uniform cold atom chains. Phys. Rev. Lett. 106, 140501 (2011)
Zwick, A., Álvarez, G.A., Stolze, J., Osenda, O.: Spin chains for robust state transfer: modified boundary couplings versus completely engineered chains. Phys. Rev. 85, 012318 (2012)
Stolze, J., Álvarez, G.A., Osenda, O., Zwick, A.: Robustness of spin-chain state-transfer schemes. In: Nikolopopulos, G.M., Jex, I. (eds.) Quantum State Transfer and Quantum Network Engineering, pp. 149–182. Quantum Science and Technology, Springer, Heidelberg (2014)
Nikolopoulos, G.M.: Statistics of a quantum-state-transfer Hamiltonian in the presence of disorder. Phys. Rev. A 87, 042311 (2013)
Jordan, P., Wigner, E.: Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631–651 (1928)
Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Petrosyan, D., Nikolopoulos, G.M., Lambropoulos, P.: State transfer in static and dynamic spin chains with disorder. Phys. Rev. A 81, 042307 (2010)
Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)
Bose, S.: Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13–30 (2007)
Romito, A., Fazio, R., Bruder, C.: Solid-state quantum communication with Josephson arrays. Phys. Rev. B 71, 100501(R) (2005)
Yang, S., Bayat, A., Bose, S.: Spin-state transfer in laterally coupled quantum-dot chains with disorders. Phys. Rev. A 82, 022336 (2010)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)
Bayat, A., Bose, S.: Information-transferring ability of the different phases of a finite XXZ spin chain. Phys. Rev. A 81, 012304 (2010)
Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)
Massar, S., Popescu, S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)
De Chiara, G., Rossini, D., Montangero, S., Fazio, R.: From perfect to fractal transmission in spin chains. Phys. Rev A 72, 012323 (2005)
Cappellaro, P.: Implementation of state transfer Hamiltonians in spin chains with magnetic resonance techniques. In: Nikolopopulos, G.M., Jex, I. (eds.) Quantum State Transfer and Quantum Network Engineering, pp. 183–222. Quantum Science and Technology, Springer, Heidelberg (2014)
Bellec, M., Nikolopoulos, G.M., Tzortzakis, S.: State transfer hamiltonians in photonic lattices. In: Nikolopopulos, G.M., Jex, I. (eds.) Quantum State Transfer and Quantum Network Engineering, pp. 223–245. Quantum Science and Technology, Springer, Heidelberg (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pavlis, A.K., Nikolopoulos, G.M. & Lambropoulos, P. Evaluation of the performance of two state-transfer Hamiltonians in the presence of static disorder. Quantum Inf Process 15, 2553–2568 (2016). https://doi.org/10.1007/s11128-016-1287-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-016-1287-y
Keywords
- State transfer
- Quantum communication
- Spin chains