Advertisement

Quantum Information Processing

, Volume 15, Issue 6, pp 2553–2568 | Cite as

Evaluation of the performance of two state-transfer Hamiltonians in the presence of static disorder

  • A. K. Pavlis
  • G. M. Nikolopoulos
  • P. Lambropoulos
Article

Abstract

We analyze the performance of two quantum-state-transfer Hamiltonians in the presence of diagonal and off-diagonal disorders, and in terms of different measures. The first Hamiltonian pertains to a fully engineered chain, and the second to a chain with modified boundary couplings. The task is to find which Hamiltonian is the most robust to given levels of disorder and irrespective of the input state. In this respect, it is shown that the performances of the two protocols are approximately equivalent.

Keywords

State transfer Quantum communication Spin chains 

References

  1. 1.
    Nikolopoulos, G.M., Jex, I. (eds.): Quantum State Transfer and Network Engineering. Quantum Science and Technology, Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Nikolopoulos, G.M., Petrosyan, D., Lambropoulos, P.: Electron wavepacket propagation in a chain of coupled quantum dots. J. Phys. Condens. Matter 16, 4991–5002 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Nikolopoulos, G.M., Petrosyan, D., Lambropoulos, P.: Coherent electron wavepacket propagation and entanglement in array of coupled quantum dots. Europhys. Lett. 65, 297–303 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Banchi, L., Apollaro, T.J.G., Cuccoli, A., Vaia, R., Verrucchi, P.: Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems. Phys. Rev. A 82, 052321 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Banchi, L., Apollaro, T.J.G., Cuccoli, A., Vaia, R., Verrucchi, P.: Long quantum channels for high-quality entanglement transfer. New J. Phys. 13, 123006 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Banchi, L., Bayat, A., Verrucchi, P., Bose, S.: Nonperturbative entangling gates between distant qubits using uniform cold atom chains. Phys. Rev. Lett. 106, 140501 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Zwick, A., Álvarez, G.A., Stolze, J., Osenda, O.: Spin chains for robust state transfer: modified boundary couplings versus completely engineered chains. Phys. Rev. 85, 012318 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Stolze, J., Álvarez, G.A., Osenda, O., Zwick, A.: Robustness of spin-chain state-transfer schemes. In: Nikolopopulos, G.M., Jex, I. (eds.) Quantum State Transfer and Quantum Network Engineering, pp. 149–182. Quantum Science and Technology, Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Nikolopoulos, G.M.: Statistics of a quantum-state-transfer Hamiltonian in the presence of disorder. Phys. Rev. A 87, 042311 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Jordan, P., Wigner, E.: Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631–651 (1928)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  13. 13.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  14. 14.
    Petrosyan, D., Nikolopoulos, G.M., Lambropoulos, P.: State transfer in static and dynamic spin chains with disorder. Phys. Rev. A 81, 042307 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Bose, S.: Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13–30 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Romito, A., Fazio, R., Bruder, C.: Solid-state quantum communication with Josephson arrays. Phys. Rev. B 71, 100501(R) (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Yang, S., Bayat, A., Bose, S.: Spin-state transfer in laterally coupled quantum-dot chains with disorders. Phys. Rev. A 82, 022336 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Bayat, A., Bose, S.: Information-transferring ability of the different phases of a finite XXZ spin chain. Phys. Rev. A 81, 012304 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Massar, S., Popescu, S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    De Chiara, G., Rossini, D., Montangero, S., Fazio, R.: From perfect to fractal transmission in spin chains. Phys. Rev A 72, 012323 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Cappellaro, P.: Implementation of state transfer Hamiltonians in spin chains with magnetic resonance techniques. In: Nikolopopulos, G.M., Jex, I. (eds.) Quantum State Transfer and Quantum Network Engineering, pp. 183–222. Quantum Science and Technology, Springer, Heidelberg (2014)CrossRefGoogle Scholar
  25. 25.
    Bellec, M., Nikolopoulos, G.M., Tzortzakis, S.: State transfer hamiltonians in photonic lattices. In: Nikolopopulos, G.M., Jex, I. (eds.) Quantum State Transfer and Quantum Network Engineering, pp. 223–245. Quantum Science and Technology, Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. K. Pavlis
    • 1
    • 2
  • G. M. Nikolopoulos
    • 1
  • P. Lambropoulos
    • 1
    • 2
  1. 1.Institute of Electronic Structure & LaserFORTHHeraklionGreece
  2. 2.Department of PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations