Skip to main content
Log in

Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By jointly using quantum Zeno dynamics and the approach of “transitionless quantum driving (TQD)” proposed by Berry to construct shortcuts to adiabatic passage, we propose an efficient scheme to fast generate multiatom Greenberger–Horne–Zeilinger (GHZ) state in separate cavities connected by optical fibers only by one-step manipulation. We first detail the generation of the three-atom GHZ state via TQD; then, we compare the proposed TQD scheme with the traditional ones with adiabatic passage. At last, the influence of various decoherence factors, such as spontaneous emission, cavity decay and fiber photon leakage, is discussed by numerical simulations. All of the results show that the present TQD scheme is fast and insensitive to atomic spontaneous emission and fiber photon leakage. Furthermore, the scheme can be directly generalized to realize N-atom GHZ state generation by the same principle in theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  2. Jia, X.J., Yan, Z.H., Duan, Z.Y., Su, X.L., Wang, H., Xie, C.D., Peng, K.C.: Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelength. Phys. Rev. Lett. 109, 253604 (2012)

    Article  ADS  Google Scholar 

  3. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1965)

    Google Scholar 

  4. Qin, Z.Z., Cao, L.M., Wang, H.L., Marino, A.M., Zhang, W.P., Jing, J.T.: Experimental generation of multiple quantum correlated beams from hot rubidium vapor. Phys. Rev. Lett. 113, 023602 (2014)

    Article  ADS  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Xia, Y., Song, J., Lu, P.M., Song, H.S.: Teleportation of an \(N\)-photon Greenberger–Horne–Zeilinger (GHZ) polarization entangled state using linear optical elements. J. Opt. Soc. Am. B 27, A1 (2010)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafators, M. (ed.) Bell’s Theorem, Quantum Theory, and Conception of the Universe. Kluwer, Dordrecht (1989)

    Google Scholar 

  11. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys 58, 1131 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Zheng, S.B.: Generation of Greenberger–Horne–Zeilinger states for multiple atoms trapped in separated cavities. Eur. Phys. J. D 54, 719 (2009)

    Article  ADS  Google Scholar 

  13. Zheng, S.B.: One-step synthesis multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87, 230404 (2001)

    Article  ADS  Google Scholar 

  14. Leibfried, D., Knill, E., Seidelin, S., Britton, J., Blakestad, R.B., Chiaverini, J., Hume, D.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Reichle, R., Wineland, D.J.: Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639 (2005)

    Article  ADS  Google Scholar 

  15. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54 (2004)

    Article  ADS  Google Scholar 

  16. Su, X.L., Tan, A.H., Jia, X.J., Zhang, J., Xie, C.D., Peng, K.C.: Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger states for continuous variables. Phys. Rev. Lett. 98, 070502 (2007)

    Article  ADS  Google Scholar 

  17. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Shi, Z.C., Xia, Y., Song, J., Song, H.S.: One-step implementation of the Fredkin gate via Zeno dynamics. Quantum. Inf. Comput. 12, 0215 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Li, W.A., Wei, L.F.: Controllable entanglement preparations between atoms in spatially-separated cavities via Zeno dynamics. Opt. Express 20, 13440 (2012)

    Article  ADS  Google Scholar 

  20. Hao, S.Y., Xia, Y., Song, J., An, N.B.: One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage. J. Opt. Soc. Am. B 30, 468 (2013)

    Article  ADS  Google Scholar 

  21. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Universally shortcuts to adiabatic passage for generation of Greenberger-Horne-Zeilinger states by transitionless quantum driving. arXiv:1411.6747v3 (2014)

  22. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcuts to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)

    Article  ADS  Google Scholar 

  23. Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012)

    Article  ADS  Google Scholar 

  24. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)

    Article  ADS  Google Scholar 

  25. Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89, 012326 (2014)

    Article  ADS  Google Scholar 

  26. Lu, M., Xia, Y., Shen, L.T., Song, J.: An effective shortcut to adiabatic passage for fast quantum state transfer in a cavity quantum electronic dynamics system. Laser Phys. 24, 105201 (2014)

    Article  ADS  Google Scholar 

  27. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states’ preparation and transition. Laser Phys. Lett. 11, 115201 (2014)

    Article  ADS  Google Scholar 

  28. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)

    Article  ADS  Google Scholar 

  29. Liang, Y., Wu, Q.C., Su, S.L., Ji, X., Zhang, S.: Shortcuts to adiabatic passage for multiqubit controlled gate. Phys. Rev. A 91, 032304 (2015)

    Article  ADS  Google Scholar 

  30. Lewis, H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Berry, M.V.: Transitionless quantum driving. J. Phys. A 42, 365303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen, X., Torrontegui, E., Muga, J.G.: Lewis–Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)

    Article  ADS  Google Scholar 

  33. von Neumann, J.: Die mathematische grundlagen der quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  34. Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  35. Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Facchi, P., Pascazio, S., Scardicchio, A., Schulman, L.S.: Zeno dynamics yields ordinary constraints. Phys. Rev. A 65, 012108 (2002)

    Article  ADS  Google Scholar 

  37. Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno subspaces. J. Phys. Conf. Ser. 196, 012017 (2009)

    Article  ADS  MATH  Google Scholar 

  39. Yang, R.C., Li, G., Zhang, T.C.: Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics. Quantum Inf. Process. 12, 493 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 101503 (2006)

    Google Scholar 

  41. Spollane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)

    Article  ADS  Google Scholar 

  42. Spollane, S.M., Kippenberg, T.J., Painter, O.J., Vahala, K.J.: Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003)

    Article  ADS  Google Scholar 

  43. Gordon, K.J., Fernandez, V., Townsend, P.D., Buller, G.S.: A short wavelength gigahertz clocked fiber optic quantum key distribution system. IEEE J. Quantum Electron. 40, 900 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11105030 and 11374054, the Foundation of Ministry of Education of China under Grant No. 212085, and the Major State Basic Research Development Program of China under Grant No. 2012CB921601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, WJ., Xia, Y., Chen, YH. et al. Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving. Quantum Inf Process 15, 2359–2376 (2016). https://doi.org/10.1007/s11128-016-1284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1284-1

Keywords

Navigation