Skip to main content
Log in

Hierarchy, factorization law of two measurement-induced nonlocalities and their performances in quantum phase transition

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

There are two measurement-induced nonlocalities, which are, respectively, defined via the trace norm (MIN-1) and Hilbert–Schmidt norm (MIN-2). We investigate the hierarchy relation and factorization law of them. Their performances in quantum phase transition have also been explored. For X-shape states, a rigorous hierarchy relation is established between two MINs. When two qubits, which are initially prepared in an X-shape state, interact independently with the corresponding multimode vacuum reservoirs, the evolutions of two MINs satisfy the factorization law. With quantum renormalization group method, it is found that two MINs can signify the criticality of the spin system while the position where the derivative of MIN-1 takes the minimum value is always larger than that where the derivative of MIN-2 takes the minimum value. Therefore, MIN-1 is more suitable to identify the critical point of quantum phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zurek, W.H.: Einselection and decoherence from an information theory perspective. Ann. Phys. (Leipzig) 9, 855 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  4. Al-Qasimi, A., James, D.F.V.: Comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations. Phys. Rev. A 83, 032101 (2011)

    Article  ADS  Google Scholar 

  5. Sahota, J., Quesada, N.: Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement. Phys. Rev. A 91, 013808 (2015)

    Article  ADS  Google Scholar 

  6. Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  MATH  Google Scholar 

  7. Horodecki, M., Horodecki, K., Horodecki, P., Horodecki, R., Oppenheim, J., De Sen, A., Sen, U.: Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90, 100402 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  10. Bellomo, B., Giorgi, G.L., Galve, F., Lo Franco, R., Compagno, G., Zambrini, R.: Unified view of correlations using the square-norm distance. Phys. Rev. A 85, 032104 (2012)

    Article  ADS  Google Scholar 

  11. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  12. Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)

    Article  ADS  Google Scholar 

  13. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bromley, T.R., Cianciaruso, M., Lo Franco, R., Adesso, G.: Unifying approach to the quantification of bipartite correlations by Bures distance. J. Phys. A 47, 405302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

  16. Hu, M.L., Fan, H.: Dynamics of entropic measurement-induced nonlocality in structured reservoirs. Ann. Phys. 327, 2343 (2012)

    Article  ADS  MATH  Google Scholar 

  17. Xi, Z., Wang, X., Li, Y.: Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 85, 042325 (2012)

    Article  ADS  Google Scholar 

  18. Mirafzali, S.Y., Sargolzahi, I., Ahanj, A., Javidan, K., Sarbishaei, M.: Measurement-induced nonlocality for an arbitrary bipartite state. Quantum Inf. Comput. 13, 479 (2013)

    MathSciNet  Google Scholar 

  19. Wu, S.X., Zhang, J., Yu, C.S., Song, H.S.: Uncertainty-induced quantum nonlocality. Phys. Lett. A 378, 344 (2014)

    Article  ADS  Google Scholar 

  20. Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)

    Article  ADS  Google Scholar 

  21. Bai, Y.K., Zhang, T.T., Wang, L.T., Wang, Z.D.: Correlation evolution and monogamy of two geometric quantum discords in multipartite systems. Eur. Phys. J. D 68, 274 (2014)

    Article  ADS  Google Scholar 

  22. Zhang, G.F., Ji, A.L., Fan, H., Liu, W.M.: Quantum correlation dynamics of two qubits in noisy environments: The factorization law and beyond. Ann. Phys. 327, 2074 (2012)

    Article  ADS  MATH  Google Scholar 

  23. Yao, Y., Li, H.W., Zhang, C.M., Yin, Z.Q., Chen, W., Guo, G.C., Han, Z.F.: Performance of various correlation measures in quantum phase transitions using the quantum renormalization-group method. Phys. Rev. A 86, 042102 (2012)

    Article  ADS  Google Scholar 

  24. Quesada, N., Al-Qasimi, A., James, D.F.V.: Quantum properties and dynamics of X states. J. Mod. Phys. 59, 1322 (2012)

    ADS  Google Scholar 

  25. Munro, W.J., James, D.F.V., White, A.G., Kwiat, P.G.: Maximizing the entanglement of two mixed qubits. Phys. Rev. A 64, 030302 (2001)

    Article  ADS  Google Scholar 

  26. Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.H.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)

    Article  ADS  Google Scholar 

  27. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., OBrien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)

    Article  ADS  Google Scholar 

  29. Roos, C.F., Chwalla, M., Kim, K., Riebe, M., Blatt, R.: Designer atoms’ for quantum metrology. Nature 443, 316 (2006)

    Article  ADS  Google Scholar 

  30. Konrad, T., de Melo, F., Tiersch, M., Kasztelan, C., Aragão, A., Buchleitner, A.: Evolution equation for quantum entanglement. Nat. Phys. 4, 99 (2008)

    Article  Google Scholar 

  31. Farías, O.J., Latune, C.L., Walborn, S.P., Davidovich, L., Ribeiro, P.H.S.: Determining the dynamics of entanglement. Science 324, 1414 (2009)

    Article  ADS  Google Scholar 

  32. Tiersch, M., de Melo, F., Buchleitner, A.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 101, 170502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. Gour, G.: Evolution and symmetry of multipartite entanglement. Phys. Rev. Lett. 105, 190504 (2010)

    Article  ADS  Google Scholar 

  34. Li, Z.G., Fei, S.M., Wang, Z.D., Liu, W.M.: Evolution equation of entanglement for bipartite systems. Phys. Rev. A 79, 024303 (2009)

    Article  ADS  Google Scholar 

  35. Li, Z.G., Zhao, M.J., Fei, S.M., Liu, W.M.: Evolution equation for entanglement of assistance. Phys. Rev. A 81, 042312 (2010)

    Article  ADS  Google Scholar 

  36. Li, J.G., Zou, J., Shao, B.: Entanglement evolution of two qubits under noisy environments. Phys. Rev. A 82, 042318 (2010)

    Article  ADS  Google Scholar 

  37. Yu, C.S., Yi, X.X., Song, H.S.: Evolution of entanglement for quantum mixed states. Phys. Rev. A 78, 062330 (2008)

    Article  ADS  Google Scholar 

  38. Liu, Z., Fan, H.: Dynamics of the bounds of squared concurrence. Phys. Rev. A 79, 032306 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  39. Mirafzali, S.Y., Sargolzahi, I., Ahanj, A., Javidan, K., Sarbishaei, M.: Factorization law for two lower bounds of concurrence. Phys. Rev. A 82, 032321 (2010)

    Article  ADS  Google Scholar 

  40. Song, W., Yu, L.B., Dong, P., Li, D.C., Yang, M., Cao, Z.L.: Geometric measure of quantum discord and the geometry of a class of two-qubit states. Sci. China Phys. Mech. Astron. 56, 737 (2013)

    Article  ADS  Google Scholar 

  41. Hu, M.L., Fan, H.: Evolution equation for geometric quantum correlation measures. Phys. Rev. A 91, 052311 (2015)

    Article  ADS  Google Scholar 

  42. Maniscalco, S., Petruccione, F.: Non-Markovian dynamics of a qubit. Phys. Rev. A 73, 012111 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  43. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  44. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  45. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  46. Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  47. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  49. Sondhi, S.L., Girvin, S.M., Carini, J.P., Shahar, D.: Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315 (1997)

    Article  ADS  Google Scholar 

  50. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  51. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  52. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  53. Qiu, L., Tang, G., Yang, X.Q., Wang, A.M.: Relating tripartite quantum discord with multisite entanglement and their performance in the one-dimensional anisotropic XXZ model. Europhys. Lett. 105, 30005 (2014)

    Article  ADS  Google Scholar 

  54. Martin-Delgado, M.A., Sierra, G.: Analytic formulations of the density matrix renormalization group. Int. J. Mod. Phys. A 11, 3145 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  55. Langari, A.: Phase diagram of the antiferromagnetic XXZ model in the presence of an external magnetic field. Phys. Rev. B 58, 14467 (1998)

    Article  ADS  Google Scholar 

  56. Langari, A.: Quantum renormalization group of XYZ model in a transverse magnetic field. Phys. Rev. B 69, 100402(R) (2004)

    Article  ADS  Google Scholar 

  57. Jafari, R., Langari, A.: Phase diagram of the one-dimensional S = 1/2 XXZ model with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions. Phys. Rev. B 76, 014412 (2007)

    Article  ADS  Google Scholar 

  58. Jafari, R., Langari, A.: Second order quantum renormalisation group of XXZ chain with next-nearest neighbour interactions. Phys. A 364, 213 (2006)

    Article  Google Scholar 

  59. Ma, F.W., Liu, S.X., Kong, X.M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83, 062309 (2011)

    Article  ADS  Google Scholar 

  60. Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model. Phys. Rev. A 77, 032346 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation Research Project (Natural Science Foundation) of Jiangsu Province under Grant No. BK20140214 and the National Natural Science Foundation of China under Grant Nos. 61401465 and 11375168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Liu, Z. Hierarchy, factorization law of two measurement-induced nonlocalities and their performances in quantum phase transition. Quantum Inf Process 15, 2053–2065 (2016). https://doi.org/10.1007/s11128-016-1256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1256-5

Keywords

Navigation