Quantum Information Processing

, Volume 15, Issue 5, pp 1827–1848 | Cite as

A comparison of approaches for finding minimum identifying codes on graphs



In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However, many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using MATLAB, an adiabatic quantum optimization approach using a D-Wave quantum annealing processor, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers. Each of these methods requires the problem to be formulated in a unique manner. In this paper, we address the challenges of computing solutions to this NP-hard problem with respect to each of these methods.


Graph theory SMT solvers Quantum annealing 


  1. 1.
    Babbush, R., O’Gorman, B., Aspuru-Guzik, A.: Resource efficient gadgets for compiling adiabatic quantum optimization problems. arXiv:1307.8041v1 [quant-ph]
  2. 2.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Huele, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 825–885. Amsterdam, Netherlands, IOS Press (2009)Google Scholar
  3. 3.
    Boixo, S., Albash, T., Spedalieri, F.M., Chancellor, N., Lidar, D.A.: Experimental signature of programmable quantum annealing. Nat. Commun. 4, 2067 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Boutin, D., Horan, V., Pelto, M.: Identifying Codes on Directed De Bruijn Graphs. arXiv:1412.5842v2 (submitted)
  5. 5.
    Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors. arXiv:1406.2741v1 [quant-ph]
  6. 6.
    Charon, I., Hudry, O., Lobstein, A.: Minimizing the size of an identifying or locating-dominating code in a graph is NP-Hard. Theor. Comput. Sci. 290(3), 2109–2120 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Choi, V.: Minor-embedding in adiabatic quantum computation I. The parameter setting problem. Quantum Inf. Process. 7, 193–209 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Choi, V.: Minor-embedding in adiabatic quantum computation II. Minor-universal graph design. Quantum Inf. Process. 10, 343–353 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Farhi, E., Goldstone, J., Sipser, M.: Quantum Computation by Adiabatic Evolution. arXiv:quant-ph/0001106
  10. 10.
    Gaitan, F., Clark, L.: Graph isomorphism and adiabatic quantum computing. Phys. Rev. A 89(2), 022342 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Horan, V.: On the Existence of \(t\)-Identifying Codes in Undirected De Bruijn Graphs. arXiv:1508.00403
  12. 12.
    Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473, 194–198 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices graphs. IEEE Trans. Inf. Theory 355(2), 599–611 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    King, A.D., McGeoch, C.C.: Algorithm engineering for a quantum annealing platform. arXiv:1410.2628v2 [cs.DS]
  15. 15.
    Klymko, C., Sullivan, B., Humble, T.: Adiabatic quantum programming: minor embedding with hard faults. Quantum Inf. Process. 13, 709–729 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kreher, D.L., Stinson, D.R.: Combinatorial algorithms: generation, enumerations, and search. In: Discrete Mathematics and Its Applications, Book 7. CRC Press, Boca Raton (1998)Google Scholar
  17. 17.
    Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)CrossRefGoogle Scholar
  18. 18.
    Messiah, A.: Quantum Mechanics, vol. II. Wiley, New York (1976)MATHGoogle Scholar
  19. 19.
    Mishra, V., Mathew, J., Pradhan, D.K.: Fault-tolerant de Bruijn graph base multipurpose architecture and routing protocol for wireless sensor networks. Int. J. Sens. Netw. 10(3), 160–175 (2011)CrossRefGoogle Scholar
  20. 20.
    Moussa, H., Baghdadi, A., Jezequel, M.: Binary de Briujn onchip network for a flexible multiprocessor LDPC decoder. ACM/IEEE Des. Autom. Conf. 429–434 (2008)Google Scholar
  21. 21.
    Perdomo-Ortiz, A., Fluegemann, J., Biswas, R., Smelyanskiy, V.N.: A Performance Estimator for Quantum Annealers: Gauge Selection and Parameter Setting. arXiv:1503.01083v1 [quant-ph]
  22. 22.
    Ray, S., Starobnski, D., Trachtenberg, A., Ungrangsi, R.: Robust location detection with sensor networks. IEEE J. Sel. Areas Commun. 22(6), 1016–1025 (2004)CrossRefGoogle Scholar
  23. 23.
    Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. arXiv:1407.2887v1 [quant-ph]
  24. 24.
    Xu, Y.C., Xiao, R.B.: Eighth ACIS International conference on software engineering, artificial intelligence, networking, and parallel/distributed computing, pp. 97–101 (2007)Google Scholar
  25. 25.
    Zick, K.M., Shehab, O., French, M.: Experimental quantum annealing: case study involving the graph isomorphism problem. arXiv:1503.06453v1 [quant-ph]

Copyright information

© Springer Science+Business Media New York (outside the USA)  2016

Authors and Affiliations

  1. 1.Air Force Research Laboratory Information DirectorateRomeUSA
  2. 2.Lockheed MartinPalo AltoUSA

Personalised recommendations