Quantum Information Processing

, Volume 15, Issue 4, pp 1387–1409 | Cite as

Establishing the equivalence between Szegedy’s and coined quantum walks using the staggered model

  • Renato PortugalEmail author


Coined quantum walks (QWs) are being used in many contexts with the goal of understanding quantum systems and building quantum algorithms for quantum computers. Alternative models such as Szegedy’s and continuous-time QWs were proposed taking advantage of the fact that quantum theory seems to allow different quantized versions based on the same classical model, in this case the classical random walk. In this work, we show the conditions upon which coined QWs are equivalent to Szegedy’s QWs. Those QW models have in common a large class of instances, in the sense that the evolution operators are equal when we convert the graph on which the coined QW takes place into a bipartite graph on which Szegedy’s QW takes place, and vice versa. We also show that the abstract search algorithm using the coined QW model can be cast into Szegedy’s searching framework using bipartite graphs with sinks.


Quantum walks Coined quantum walk Szegedy’s quantum walk Staggered quantum walk Equivalence among quantum walks 



The author acknowledges financial support from Faperj (Grant No. E-26/102.350/2013) and CNPq (Grant Nos. 304709/2011-5, 474143/2013-9, and 400216/2014-0). The author thanks useful discussion with Raqueline A.M. Santos, Tharso D. Fernandes, Stefan Boettcher, Andris Ambainis, and the quantum computing group of LNCC.


  1. 1.
    Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the 33rd ACM Symposium on Theory of computing, pp. 50–59 (2000)Google Scholar
  3. 3.
    Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (2004)Google Scholar
  4. 4.
    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Konno, N.: Quantum random walks in one dimension. Quantum Inform. Process. 1(5), 345–354 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69, 052323 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inform. Process. 11(5), 1015–1106 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Konno, N.: Quantum walks. In: Franz, U., Schrmann, M. (eds.) Quantum Potential Theory. Lecture Notes in Mathematics, vol. 1954, pp. 309–452. Springer, Berlin Heidelberg (2008)Google Scholar
  10. 10.
    Kendon, V.: Decoherence in quantum walks—a review. Math. Struct. Comput. Sci. 17(6), 1169–1220 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Travaglione, B., Milburn, G.: Implementing the quantum random walk. Phys. Rev. A 65(3), 032310 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Sanders, B.C., Bartlett, S.D., Tregenna, B., Knight, P.L.: Quantum quincunx in cavity quantum electrodynamics. Phys. Rev. A 67(4), 042305 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Moqadam, J.K., Portugal, R., de Oliveira, M.C.: Quantum walks on a circle with optomechanical systems. Quantum Inform. Process. 14(10), 3595–3611 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Karski, M., Förster, L., Choi, J.-M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104(10), 100503 (2010)CrossRefGoogle Scholar
  16. 16.
    Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, Ch.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th Symposium on Foundations of Computer Science, pp. 32–41 (2004)Google Scholar
  18. 18.
    Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Krovi, H., Magniez, F., Ozols, M., Roland J.: Finding is as easy as detecting for quantum walks. In: Proceedings of the 37th International Colloquium Conference on Automata, Languages and Programming, pp. 540–551 (2010)Google Scholar
  20. 20.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantum walk model. Quantum Information Processing (accepted). arXiv:1505.04761 (2015)
  22. 22.
    Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hamada, M., Konno, N., Segawa, E.: Relation between coined quantum walks and quantum cellular automata. RIMS Kokyuroku 1422, 1–11 (2005)Google Scholar
  24. 24.
    Portugal, R., Boettcher, S., Falkner, S.: One-dimensional coinless quantum walks. Phys. Rev. A 91, 052319 (2015)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Patel, A., Raghunathan, K.S., Rungta, P.: Quantum random walks do not need a coin toss. Phys. Rev. A 71, 032347 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Falk, M.D.: Quantum search on the spatial grid. arXiv:1303.4127 (2013)
  27. 27.
    Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1099–1108 (2005)Google Scholar
  28. 28.
    Portugal, R.: Quantum Walks and Search Algorithms. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  29. 29.
    Tulsi, A.: Faster quantum walk algorithm for the two dimensional spatial search. Phys. Rev. A 78, 012310 (2008)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Abal, G., Donangelo, R., Marquezino, F.L., Portugal, R.: Spatial search on a honeycomb network. Math. Struct. Comput. Sci. 20, 999–1009 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Abal, G., Donangelo, R., Forets, M., Portugal, R.: Spatial quantum search in a triangular network. Math. Struct. Comput. Sci. 22, 1–11 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Berry, S.D., Wang, J.B.: Quantum-walk-based search and centrality. Phys. Rev. A 82, 042333 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Loke, T., Wang, J.B.: Efficient circuit implementation of quantum walks on non-degree-regular graphs. Phys. Rev. A 86, 042338 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Krovi, H., Magniez, F., Ozols, M., Roland, J.: Quantum walks can find a marked element on any graph. Algorithmica, (2015). doi: 10.1007/s00453-015-9979-8

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National Laboratory of Scientific Computing - LNCCPetrópolisBrazil

Personalised recommendations