# Establishing the equivalence between Szegedy’s and coined quantum walks using the staggered model

- 233 Downloads
- 18 Citations

## Abstract

Coined quantum walks (QWs) are being used in many contexts with the goal of understanding quantum systems and building quantum algorithms for quantum computers. Alternative models such as Szegedy’s and continuous-time QWs were proposed taking advantage of the fact that quantum theory seems to allow different quantized versions based on the same classical model, in this case the classical random walk. In this work, we show the conditions upon which coined QWs are equivalent to Szegedy’s QWs. Those QW models have in common a large class of instances, in the sense that the evolution operators are equal when we convert the graph on which the coined QW takes place into a bipartite graph on which Szegedy’s QW takes place, and vice versa. We also show that the abstract search algorithm using the coined QW model can be cast into Szegedy’s searching framework using bipartite graphs with sinks.

## Keywords

Quantum walks Coined quantum walk Szegedy’s quantum walk Staggered quantum walk Equivalence among quantum walks## Notes

### Acknowledgments

The author acknowledges financial support from Faperj (Grant No. E-26/102.350/2013) and CNPq (Grant Nos. 304709/2011-5, 474143/2013-9, and 400216/2014-0). The author thanks useful discussion with Raqueline A.M. Santos, Tharso D. Fernandes, Stefan Boettcher, Andris Ambainis, and the quantum computing group of LNCC.

## References

- 1.Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A
**48**(2), 1687–1690 (1993)ADSCrossRefGoogle Scholar - 2.Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the 33rd ACM Symposium on Theory of computing, pp. 50–59 (2000)Google Scholar
- 3.Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (2004)Google Scholar
- 4.Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A
**67**, 052307 (2003)ADSCrossRefGoogle Scholar - 5.Konno, N.: Quantum random walks in one dimension. Quantum Inform. Process.
**1**(5), 345–354 (2002)MathSciNetCrossRefzbMATHGoogle Scholar - 6.Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A
**69**, 052323 (2004)ADSCrossRefGoogle Scholar - 7.Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A
**81**, 042330 (2010)ADSMathSciNetCrossRefGoogle Scholar - 8.Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inform. Process.
**11**(5), 1015–1106 (2012)MathSciNetCrossRefzbMATHGoogle Scholar - 9.Konno, N.: Quantum walks. In: Franz, U., Schrmann, M. (eds.) Quantum Potential Theory. Lecture Notes in Mathematics, vol. 1954, pp. 309–452. Springer, Berlin Heidelberg (2008)Google Scholar
- 10.Kendon, V.: Decoherence in quantum walks—a review. Math. Struct. Comput. Sci.
**17**(6), 1169–1220 (2007)MathSciNetCrossRefzbMATHGoogle Scholar - 11.Travaglione, B., Milburn, G.: Implementing the quantum random walk. Phys. Rev. A
**65**(3), 032310 (2002)ADSCrossRefGoogle Scholar - 12.Sanders, B.C., Bartlett, S.D., Tregenna, B., Knight, P.L.: Quantum quincunx in cavity quantum electrodynamics. Phys. Rev. A
**67**(4), 042305 (2003)ADSCrossRefGoogle Scholar - 13.Moqadam, J.K., Portugal, R., de Oliveira, M.C.: Quantum walks on a circle with optomechanical systems. Quantum Inform. Process.
**14**(10), 3595–3611 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 14.Karski, M., Förster, L., Choi, J.-M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science
**325**(5937), 174–177 (2009)ADSCrossRefGoogle Scholar - 15.Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett.
**104**(10), 100503 (2010)CrossRefGoogle Scholar - 16.Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, Ch.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett.
**104**(5), 050502 (2010)ADSCrossRefGoogle Scholar - 17.Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th Symposium on Foundations of Computer Science, pp. 32–41 (2004)Google Scholar
- 18.Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput.
**40**(1), 142–164 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 19.Krovi, H., Magniez, F., Ozols, M., Roland J.: Finding is as easy as detecting for quantum walks. In: Proceedings of the 37th International Colloquium Conference on Automata, Languages and Programming, pp. 540–551 (2010)Google Scholar
- 20.Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput.
**37**(2), 413–424 (2007)MathSciNetCrossRefzbMATHGoogle Scholar - 21.Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantum walk model. Quantum Information Processing (accepted). arXiv:1505.04761 (2015)
- 22.Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys.
**85**(5–6), 551–574 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 23.Hamada, M., Konno, N., Segawa, E.: Relation between coined quantum walks and quantum cellular automata. RIMS Kokyuroku
**1422**, 1–11 (2005)Google Scholar - 24.Portugal, R., Boettcher, S., Falkner, S.: One-dimensional coinless quantum walks. Phys. Rev. A
**91**, 052319 (2015)ADSMathSciNetCrossRefGoogle Scholar - 25.Patel, A., Raghunathan, K.S., Rungta, P.: Quantum random walks do not need a coin toss. Phys. Rev. A
**71**, 032347 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 26.Falk, M.D.: Quantum search on the spatial grid. arXiv:1303.4127 (2013)
- 27.Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1099–1108 (2005)Google Scholar
- 28.Portugal, R.: Quantum Walks and Search Algorithms. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
- 29.Tulsi, A.: Faster quantum walk algorithm for the two dimensional spatial search. Phys. Rev. A
**78**, 012310 (2008)ADSCrossRefzbMATHGoogle Scholar - 30.Abal, G., Donangelo, R., Marquezino, F.L., Portugal, R.: Spatial search on a honeycomb network. Math. Struct. Comput. Sci.
**20**, 999–1009 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 31.Abal, G., Donangelo, R., Forets, M., Portugal, R.: Spatial quantum search in a triangular network. Math. Struct. Comput. Sci.
**22**, 1–11 (2012)MathSciNetCrossRefzbMATHGoogle Scholar - 32.Berry, S.D., Wang, J.B.: Quantum-walk-based search and centrality. Phys. Rev. A
**82**, 042333 (2010)ADSCrossRefGoogle Scholar - 33.Loke, T., Wang, J.B.: Efficient circuit implementation of quantum walks on non-degree-regular graphs. Phys. Rev. A
**86**, 042338 (2012)ADSCrossRefGoogle Scholar - 34.Krovi, H., Magniez, F., Ozols, M., Roland, J.: Quantum walks can find a marked element on any graph. Algorithmica, (2015). doi: 10.1007/s00453-015-9979-8