Skip to main content
Log in

Toward a scalable quantum computing architecture with mixed species ion chains

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We report on progress toward implementing mixed ion species quantum information processing for a scalable ion-trap architecture. Mixed species chains may help solve several problems with scaling ion-trap quantum computation to large numbers of qubits. Initial temperature measurements of linear Coulomb crystals containing barium and ytterbium ions indicate that the mass difference does not significantly impede cooling at low ion numbers. Average motional occupation numbers are estimated to be \(\bar{n} \approx 130\) quanta per mode for chains with small numbers of ions, which is within a factor of three of the Doppler limit for barium ions in our trap. We also discuss generation of ion–photon entanglement with barium ions with a fidelity of \(F \ge 0.84\), which is an initial step towards remote ion–ion coupling in a more scalable quantum information architecture. Further, we are working to implement these techniques in surface traps in order to exercise greater control over ion chain ordering and positioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The supplementary material includes a video demonstration of shuttling from the loading region to the quantum region of the Sandia Y-Trap.

References

  1. Olmschenk, S., Younge, K.C., Moehring, D.L., Matsukevich, D.N., Maunz, P., Monroe, C.: Manipulation and detection of a trapped \(\text{ Yb }^{+}\) hyperfine qubit. Phys. Rev. A 76, 052314 (2007)

    Article  ADS  Google Scholar 

  2. Kirchmair, G., Benhelm, J., Zähringer, F., Gerritsma, R., Roos, C.F., Blatt, R.: Deterministic entanglement of ions in thermal states of motion. New J. Phys. 11(2), 023002 (2009)

    Article  ADS  Google Scholar 

  3. Hayes, D., Matsukevich, D.N., Maunz, P., Hucul, D., Quraishi, Q., Olmschenk, S., Campbell, W., Mizrahi, J., Senko, C., Monroe, C.: Entanglement of atomic qubits using an optical frequency comb. Phys. Rev. Lett. 104, 140501 (2010)

    Article  ADS  Google Scholar 

  4. Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.-M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014)

    Article  ADS  Google Scholar 

  5. Moehring, D.L., Maunz, P., Olmschenk, S., Younge, K.C., Matsukevich, D.N., Duan, L.-M., Monroe, C.: Entanglement of single-atom quantum bits at a distance. Nature 449(7158), 68–71 (2007)

    Article  ADS  Google Scholar 

  6. Luo, L., Hayes, D., Manning, T.A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Sterk, J.D., Monroe, C.: Protocols and techniques for a scalable atom-photon quantum network. Fortschr. Phys. 57(11–12), 1133–1152 (2009)

    Article  MATH  Google Scholar 

  7. Gurell, J., Biémont, E., Blagoev, K., Fivet, V., Lundin, P., Mannervik, S., Norlin, L.-O., Quinet, P., Rostohar, D., Royen, P., Schef, P.: Laser-probing measurements and calculations of lifetimes of the \(5d^{2}d_{32}\) and \(5d^{2}d_{52}\) metastable levels in \({\rm Ba}ii\). Phys. Rev. A 75, 052506 (2007)

    Article  ADS  Google Scholar 

  8. Campbell, W.C., Mizrahi, J., Quraishi, Q., Senko, C., Hayes, D., Hucul, D., Matsukevich, D.N., Maunz, P., Monroe, C.: Ultrafast gates for single atomic qubits. Phys. Rev. Lett. 105, 090502 (2010)

    Article  ADS  Google Scholar 

  9. Schlatter, A., Zeller, S.C., Grange, R., Paschotta, R., Keller, U.: Pulse-energy dynamics of passively mode-locked solid-state lasers above the q-switching threshold. J. Opt. Soc. Am. B 21(8), 1469–1478 (2004)

    Article  ADS  Google Scholar 

  10. Sun, L., Zhang, L., Yu, H.J., Guo, L., Ma, J.L., Zhang, J., Hou, W., Lin, X.C., Li, J.M.: 880 nm ld pumped passive mode-locked TEM 00 Nd:YVO 4 laser based on SESAM. Laser Phys. Lett. 7(10), 711 (2010)

    Article  ADS  Google Scholar 

  11. Shu, G., Vittorini, G., Buikema, A., Nichols, C.S., Volin, C., Stick, D., Brown, K.R.: Heating rates and ion-motion control in a \({\sf Y}\)-junction surface-electrode trap. Phys. Rev. A 89, 062308 (2014)

    Article  ADS  Google Scholar 

  12. Wright, K., Amini, J.M., Faircloth, D.L., Volin, C., Doret, S.C., Hayden, H., Pai, C.-S., Landgren, D.W., Denison, D., Killian, T., Slusher, R.E., Harter, A.W.: Reliable transport through a microfabricated X-junction surface-electrode ion trap. New J. Phys. 15(3), 033004 (2013)

    Article  ADS  Google Scholar 

  13. Home, J.P., Hanneke, D., Jost, J.D., Leibfried, D., Wineland, D.J.: Normal modes of trapped ions in the presence of anharmonic trap potentials. New J. Phys. 13(7), 073026 (2011)

    Article  ADS  Google Scholar 

  14. Allcock, D.T.C., Harty, T.P., Janacek, H.A., Linke, N.M., Ballance, C.J., Steane, A.M., Lucas, D.M., Jarecki Jr, R.L., Habermehl, S.D., Blain, M.G., Stick, D., Moehring, D.L.: Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap. Appl. Phys. B 107(4), 913–919 (2012)

    Article  ADS  Google Scholar 

  15. Daniilidis, N., Narayanan, S., Möller, S.A., Clark, R., Lee, T.E., Leek, P.J., Wallraff, A., Schulz, S., Schmidt-Kaler, F., Häffner, H.: Fabrication and heating rate study of microscopic surface electrode ion traps. New J. Phys. 13(1), 013032 (2011)

    Article  ADS  Google Scholar 

  16. Graham, R.D., Chen, S.-P., Sakrejda, T., Wright, J., Zhou, Z., Blinov, B.B.: A system for trapping barium ions in a microfabricated surface trap. AIP Adv. 4(5), 057124 (2014)

    Article  ADS  Google Scholar 

  17. Auchter, C., Chou, C.-K., Noel, T.W., Blinov, B.B.: Ion-photon entanglement and bell inequality violation with \({}^{138}\text{ Ba }^+\). J. Opt. Soc. Am. B 31(7), 1568–1572 (2014)

    Article  ADS  Google Scholar 

  18. Sterk, J.D., Luo, L., Manning, T.A., Maunz, P., Monroe, C.: Photon collection from a trapped ion-cavity system. Phys. Rev. A 85, 062308 (2012)

    Article  ADS  Google Scholar 

  19. Clark, C.R., Chou, C.-W., Ellis, R., Jeff Hunker, A., Kemme, S.A., Maunz, P., Tabakov, B., Tigges, C., Stick, D.L.: Characterization of fluorescence collection optics integrated with a microfabricated surface electrode ion trap. Phys. Rev. Appl. 1, 024004 (2014)

    Article  ADS  Google Scholar 

  20. Jechow, A., Streed, E.W., Norton, B.G., Petrasiunas, M.J., Kielpinski, D.: Wavelength-scale imaging of trapped ions using a phase fresnel lens. Opt. Lett. 36(8), 1371–1373 (2011)

    Article  ADS  Google Scholar 

  21. Shu, G., Chou, C.-K., Kurz, N., Dietrich, M.R., Blinov, B.B.: Efficient fluorescence collection and ion imaging with the “tack” ion trap. J. Opt. Soc. Am. B 28(12), 2865–2870 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Matthew R. Hoffman, Spencer R. Williams, and Anupriya Jayakumar for useful conversations. We would also like to acknowledge support from the Intelligence Advanced Research Projects Activity through the Multi-Qubit Coherent Operations Program and the National Science Foundation under Grant No. PHY-1067054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Wright.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 1139 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, J., Auchter, C., Chou, CK. et al. Toward a scalable quantum computing architecture with mixed species ion chains. Quantum Inf Process 15, 5339–5349 (2016). https://doi.org/10.1007/s11128-015-1220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1220-9

Keywords

Navigation