Skip to main content

Quantum walk on the line through potential barriers


Quantum walks are well known for their ballistic dispersion, traveling \(\Theta (t)\) away in t steps, which is quadratically faster than a classical random walk’s diffusive spreading. In physical implementations of the walk, however, the particle may need to tunnel through a potential barrier to hop, and a naive calculation suggests that this could eliminate the ballistic transport. We show by explicit calculation, however, that such a loss does not occur. Rather, the \(\Theta (t)\) dispersion is retained, with only the coefficient changing, which additionally gives a way to detect and quantify the hopping errors in experiments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  2. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  3. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pp. 22–31. IEEE Computer Society (2004)

  5. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. Theory Comput. 4(8), 169–190 (2008)

    Article  MathSciNet  Google Scholar 

  6. Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND–OR formula of size \({N}\) can be evaluated in time \({N}^{1/2+O(1)}\) on a quantum computer. SIAM J. Comput. 39(6), 2513–2530 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)

    Article  ADS  MATH  Google Scholar 

  9. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing. STOC ’01, pp. 37–49. ACM, New York, NY, USA (2001)

  10. Nayak, A., Vishwanath, A.: Quantum walk on the line (2000). arXiv:quant-ph/0010117

  11. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing. STOC ’03, pp. 59–68. ACM, New York, NY, USA (2003)

  12. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. Konno, N.: Quantum random walks in one dimension. Quantum Inf. Process. 1(5), 345–354 (2002)

    Article  MathSciNet  Google Scholar 

  14. Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)

    Article  ADS  Google Scholar 

  15. ben Avraham, D., Bollt, E., Tamon, C.: One-dimensional continuous-time quantum walks. Quantum Inf. Process. 3(1–5), 295–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Konno, N.: Limit theorem for continuous-time quantum walk on the line. Phys. Rev. E 72, 026113 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gottlieb, A.D.: Convergence of continuous-time quantum walks on the line. Phys. Rev. E 72, 047102 (2005)

    Article  ADS  Google Scholar 

  18. Souza, A.M.C., Andrade, R.F.S.: Coin state properties in quantum walks. Sci. Rep. 3, 1976 (2013)

    Article  ADS  Google Scholar 

  19. Bouwmeester, D., Marzoli, I., Karman, G.P., Schleich, W., Woerdman, J.P.: Optical Galton board. Phys. Rev. A 61, 013410 (1999)

    Article  ADS  Google Scholar 

  20. Ryan, C.A., Laforest, M., Boileau, J.C., Laflamme, R.: Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor. Phys. Rev. A 72, 062317 (2005)

    Article  ADS  Google Scholar 

  21. Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)

    Article  ADS  Google Scholar 

  22. Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010)

    Article  ADS  Google Scholar 

  23. Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)

    Article  ADS  Google Scholar 

  24. Karski, M., Förster, L., Choi, J.M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009)

    Article  ADS  Google Scholar 

  25. Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009)

    Article  ADS  Google Scholar 

  26. Matjeschk, R., Schneider, C., Enderlein, M., Huber, T., Schmitz, H., Glueckert, J., Schaetz, T.: Experimental simulation and limitations of quantum walks with trapped ions. New J. Phys. 14(3), 035012 (2012)

    Article  ADS  Google Scholar 

  27. Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)

    Article  Google Scholar 

  28. Chandrashekar, C.M.: Implementing the one-dimensional quantum (Hadamard) walk using a Bose–Einstein condensate. Phys. Rev. A 74, 032307 (2006)

    Article  ADS  Google Scholar 

  29. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’05, pp. 1099–1108. SIAM, Philadelphia, PA, USA (2005)

  30. Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A: Math. Theor. 48(43), 435304 (2015)

    Article  ADS  Google Scholar 

  31. Wong, T.G.: Quantum walk search through potential barriers (2015). arXiv:1503.06605 [quant-ph]

  32. Ambainis, A., Wong, T.G.: Correcting for potential barriers in quantum walk search. Quantum Inf. Comput. 15(15&16), 1365–1372 (2015)

    Google Scholar 

  33. Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I.: Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003)

    Article  ADS  Google Scholar 

  34. Raizen, M., Salomon, C., Niu, Q.: New light on quantum transport. Phys. Today 50(7), 30–34 (1997)

    Article  Google Scholar 

  35. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  36. Joye, A., Merkli, M.: Dynamical localization of quantum walks in random environments. J. Stat. Phys. 140(6), 1025–1053 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ahlbrecht, A., Vogts, H., Werner, A.H., Werner, R.F.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52(4), 042201 (2011)

    Article  ADS  MathSciNet  Google Scholar 

Download references


Thanks to Andris Ambainis and Alexander Rivosh for useful discussions. This work was partially supported by the European Union Seventh Framework Programme (FP7/2007-2013) under the QALGO (Grant Agreement No. 600700) project and the ERC Advanced Grant MQC.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Thomas G. Wong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, T.G. Quantum walk on the line through potential barriers. Quantum Inf Process 15, 675–688 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Quantum walks
  • Quantum tunneling
  • Faulty shift
  • Fourier transform