Quantum Information Processing

, Volume 15, Issue 2, pp 675–688 | Cite as

Quantum walk on the line through potential barriers

  • Thomas G. WongEmail author


Quantum walks are well known for their ballistic dispersion, traveling \(\Theta (t)\) away in t steps, which is quadratically faster than a classical random walk’s diffusive spreading. In physical implementations of the walk, however, the particle may need to tunnel through a potential barrier to hop, and a naive calculation suggests that this could eliminate the ballistic transport. We show by explicit calculation, however, that such a loss does not occur. Rather, the \(\Theta (t)\) dispersion is retained, with only the coefficient changing, which additionally gives a way to detect and quantify the hopping errors in experiments.


Quantum walks Quantum tunneling Faulty shift Fourier transform 



Thanks to Andris Ambainis and Alexander Rivosh for useful discussions. This work was partially supported by the European Union Seventh Framework Programme (FP7/2007-2013) under the QALGO (Grant Agreement No. 600700) project and the ERC Advanced Grant MQC.


  1. 1.
    Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998)Google Scholar
  2. 2.
    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)CrossRefADSGoogle Scholar
  3. 3.
    Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pp. 22–31. IEEE Computer Society (2004)Google Scholar
  5. 5.
    Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. Theory Comput. 4(8), 169–190 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Any AND–OR formula of size \({N}\) can be evaluated in time \({N}^{1/2+O(1)}\) on a quantum computer. SIAM J. Comput. 39(6), 2513–2530 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)CrossRefADSzbMATHGoogle Scholar
  9. 9.
    Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing. STOC ’01, pp. 37–49. ACM, New York, NY, USA (2001)Google Scholar
  10. 10.
    Nayak, A., Vishwanath, A.: Quantum walk on the line (2000). arXiv:quant-ph/0010117
  11. 11.
    Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing. STOC ’03, pp. 59–68. ACM, New York, NY, USA (2003)Google Scholar
  12. 12.
    Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Konno, N.: Quantum random walks in one dimension. Quantum Inf. Process. 1(5), 345–354 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)CrossRefADSGoogle Scholar
  15. 15.
    ben Avraham, D., Bollt, E., Tamon, C.: One-dimensional continuous-time quantum walks. Quantum Inf. Process. 3(1–5), 295–308 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Konno, N.: Limit theorem for continuous-time quantum walk on the line. Phys. Rev. E 72, 026113 (2005)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Gottlieb, A.D.: Convergence of continuous-time quantum walks on the line. Phys. Rev. E 72, 047102 (2005)CrossRefADSGoogle Scholar
  18. 18.
    Souza, A.M.C., Andrade, R.F.S.: Coin state properties in quantum walks. Sci. Rep. 3, 1976 (2013)CrossRefADSGoogle Scholar
  19. 19.
    Bouwmeester, D., Marzoli, I., Karman, G.P., Schleich, W., Woerdman, J.P.: Optical Galton board. Phys. Rev. A 61, 013410 (1999)CrossRefADSGoogle Scholar
  20. 20.
    Ryan, C.A., Laforest, M., Boileau, J.C., Laflamme, R.: Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor. Phys. Rev. A 72, 062317 (2005)CrossRefADSGoogle Scholar
  21. 21.
    Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)CrossRefADSGoogle Scholar
  22. 22.
    Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010)CrossRefADSGoogle Scholar
  23. 23.
    Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)CrossRefADSGoogle Scholar
  24. 24.
    Karski, M., Förster, L., Choi, J.M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009)CrossRefADSGoogle Scholar
  25. 25.
    Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009)CrossRefADSGoogle Scholar
  26. 26.
    Matjeschk, R., Schneider, C., Enderlein, M., Huber, T., Schmitz, H., Glueckert, J., Schaetz, T.: Experimental simulation and limitations of quantum walks with trapped ions. New J. Phys. 14(3), 035012 (2012)CrossRefADSGoogle Scholar
  27. 27.
    Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)CrossRefGoogle Scholar
  28. 28.
    Chandrashekar, C.M.: Implementing the one-dimensional quantum (Hadamard) walk using a Bose–Einstein condensate. Phys. Rev. A 74, 032307 (2006)CrossRefADSGoogle Scholar
  29. 29.
    Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’05, pp. 1099–1108. SIAM, Philadelphia, PA, USA (2005)Google Scholar
  30. 30.
    Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A: Math. Theor. 48(43), 435304 (2015)CrossRefADSGoogle Scholar
  31. 31.
    Wong, T.G.: Quantum walk search through potential barriers (2015). arXiv:1503.06605 [quant-ph]
  32. 32.
    Ambainis, A., Wong, T.G.: Correcting for potential barriers in quantum walk search. Quantum Inf. Comput. 15(15&16), 1365–1372 (2015)Google Scholar
  33. 33.
    Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I.: Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003)CrossRefADSGoogle Scholar
  34. 34.
    Raizen, M., Salomon, C., Niu, Q.: New light on quantum transport. Phys. Today 50(7), 30–34 (1997)CrossRefGoogle Scholar
  35. 35.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  36. 36.
    Joye, A., Merkli, M.: Dynamical localization of quantum walks in random environments. J. Stat. Phys. 140(6), 1025–1053 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Ahlbrecht, A., Vogts, H., Werner, A.H., Werner, R.F.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52(4), 042201 (2011)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia

Personalised recommendations