Quantum Information Processing

, Volume 15, Issue 3, pp 1309–1345 | Cite as

Swiveled Rényi entropies

Article

Abstract

This paper introduces “swiveled Rényi entropies” as an alternative to the Rényi entropic quantities put forward in Berta et al. (Phys Rev A 91(2):022333, 2015). What distinguishes the swiveled Rényi entropies from the prior proposal of Berta et al. is that there is an extra degree of freedom: an optimization over unitary rotations with respect to particular fixed bases (swivels). A consequence of this extra degree of freedom is that the swiveled Rényi entropies are ordered, which is an important property of the Rényi family of entropies. The swiveled Rényi entropies are, however, generally discontinuous at \(\alpha =1\) and do not converge to the von Neumann entropy-based measures in the limit as \(\alpha \rightarrow 1\), instead bounding them from above and below. Particular variants reduce to known Rényi entropies, such as the Rényi relative entropy or the sandwiched Rényi relative entropy, but also lead to ordered Rényi conditional mutual information and ordered Rényi generalizations of a relative entropy difference. Refinements of entropy inequalities such as monotonicity of quantum relative entropy and strong subadditivity follow as a consequence of the aforementioned properties of the swiveled Rényi entropies. Due to the lack of convergence at \(\alpha =1\), it is unclear whether the swiveled Rényi entropies would be useful in one-shot information theory, so that the present contribution represents partial progress toward this goal.

Keywords

Rényi entropies Conditional mutual information  Monotonicity of quantum relative entropy Strong subadditivity 

References

  1. 1.
    Barnum, H., Knill, E.: Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43(5), 2097–2106 (2002). arXiv:quant-ph/0004088
  2. 2.
    Beigi, S.: Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 54(12), 122202 (2013). arXiv:1306.5920
  3. 3.
    Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)CrossRefMATHGoogle Scholar
  4. 4.
    Berta, M., Lemm, M., Wilde, M.M.: Monotonicity of quantum relative entropy and recoverability. Quantum Inf. Comput. 15(15 & 16), 1333–1354 (2015). arXiv:1412.4067
  5. 5.
    Berta, M., Seshadreesan, K., Wilde, M.M.: Rényi generalizations of the conditional quantum mutual information. J. Math. Phys. 56(2), 022205 (2015). arXiv:1403.6102
  6. 6.
    Berta, M., Seshadreesan, K.P., Wilde, M.M.: Rényi generalizations of quantum information measures. Phys. Rev. A 91(2), 022333 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Christandl, M., Winter, A.: “Squashed entanglement”: an additive entanglement measure. J. Math. Phys. 45(3), 829–840 (2004). arXiv:quant-ph/0308088
  8. 8.
    Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications (2015). arXiv:1511.04857
  9. 9.
    Cooney, T., Mosonyi, M., Wilde, M.M.: Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication (2014). arXiv:1408.3373
  10. 10.
    Csiszár, I.: Generalized cutoff rates and Rényi’s information measures. IEEE Trans. Inf. Theory 41(1), 26–34 (1995)CrossRefMATHGoogle Scholar
  11. 11.
    Datta, N.: Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009). arXiv:0803.2770
  12. 12.
    Datta, N., Wilde, M.M.: Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures. J. Phys. A: Math. Theor. 48(50), 505301 (2015). arXiv:1501.05636
  13. 13.
    Dupuis, F.: Chain rules for quantum Rényi entropies. J. Math. Phys. 56(2), 022203 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dupuis, F., Fawzi, O., Wehner, S.: Entanglement sampling and applications. IEEE Trans. Inf. Theory 61(2), 1093–1112 (2015). arXiv:1305.1316
  15. 15.
    Dupuis, F., Kramer, L., Faist, P., Renes, J.M., Renner, R.: Proceedings of the XVIIth International Congress on Mathematical Physics, chapter Generalized Entropies, pp. 134–153. World Scientific (2012). arXiv:1211.3141
  16. 16.
    van Erven, T., Harremoes, P.: Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014). arXiv:1206.2459
  17. 17.
    Fawzi, O., Renner, R.: Quantum conditional mutual information and approximate Markov chains. Commun. Math. Phys. 340(2), 575–611 (2015). arXiv:1410.0664
  18. 18.
    Frank, R.L., Lieb, E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys. 54(12), 122201 (2013). arXiv:1306.5358
  19. 19.
    Hirschman, I.I.: A convexity theorem for certain groups of transformations. J. Anal. Math. 2(2), 209–218 (1952)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Junge, M., Renner, R., Sutter, D., Wilde, M.M., Winter, A.: Universal recovery from a decrease of quantum relative entropy (2015). arXiv:1509.07127
  21. 21.
    Li, K., Winter, A.: Squashed entanglement, \(k\)-extendibility, quantum Markov chains, and recovery maps (2014). arXiv:1410.4184
  22. 22.
    Lieb, E.H., Ruskai, M.B.: A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 30(10), 434–436 (1973)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14(12), 1938–1941 (1973)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40(2), 147–151 (1975)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Linden, N., Mosonyi, M., Winter, A.: The structure of Rényi entropic inequalities. Proc. R. Soc. A: Math., Phys. Eng. Sci. 469(2158), 20120,737 (2013). arXiv:1212.0248
  26. 26.
    Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new definition and some properties. J. Math. Phys. 54(12), 122203 (2013). arXiv:1306.3142
  27. 27.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  28. 28.
    Petz, D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23(1), 57–65 (1986)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105(1), 123–131 (1986)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Petz, D.: Sufficiency of channels over von Neumann algebras. Q. J. Math. 39(1), 97–108 (1988)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)MATHGoogle Scholar
  32. 32.
    Renner, R.: Security of quantum key distribution. Ph.D. thesis, ETH Zürich (2005). arXiv:quant-ph/0512258
  33. 33.
    Renner, R., Wolf, S.: Smooth Rényi entropy and applications. In: Proceedings of the 2007 International Symposium on Information Theory, p. 232, (2004). http://www.ti.inf.ethz.ch/sw/publications/smooth.ps
  34. 34.
    Rényi, A.: On measures of entropy and information. Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability 1, pp. 547–561 (1961). Held at the Statistical Laboratory, University of California, 1960, J. Neyman (ed.) (University of California Press, Berkeley)Google Scholar
  35. 35.
    Seshadreesan, K.P., Berta, M., Wilde, M.M.: Rényi squashed entanglement, discord, and relative entropy differences. J. Phys. A: Math. Theor. 48(39), 395303 (2015). arXiv:1410.1443
  36. 36.
    Sutter, D., Fawzi, O., Renner, R.: Universal recovery map for approximate Markov chains (2015). arXiv:1504.07251
  37. 37.
    Suzuki, M.: Transfer-matrix method and Monte Carlo simulation in quantum spin systems. Phys. Rev. B 31(5), 2957 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    Tomamichel, M.: A framework for non-asymptotic quantum information theory. Ph.D. thesis, ETH Zurich (2012). arXiv:1203.2142
  39. 39.
    Tomamichel, M.: Quantum Information Processing with Finite Resources—Mathematical Foundations. SpringerBriefs in Mathematical Physics. Springer, (2015). arXiv:1504.00233
  40. 40.
    Uhlmann, A.: The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 9(2), 273–279 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977). http://projecteuclid.org/euclid.cmp/1103900757
  42. 42.
    Umegaki, H.: Conditional expectations in an operator algebra IV (entropy and information). Kodai Math. Semin. Rep. 14(2), 59–85 (1962)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Wilde, M.M.: Quantum Inf. Theory. Cambridge University Press, Cambridge (2013). arXiv:1106.1445
  44. 44.
    Wilde, M.M.: Multipartite quantum correlations and local recoverability. Proc. R. Soc. A 471, 20140,941 (2014). arXiv:1412.0333
  45. 45.
    Wilde, M.M.: Recoverability in quantum information theory. Proc. R. Soc. A 471(2182), 20150,338 (2015). arXiv:1505.04661
  46. 46.
    Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014). arXiv:1306.1586
  47. 47.
    Zhang, L.: A stronger monotonicity inequality of quantum relative entropy: a unifying approach via Rényi relative entropy (2014). arXiv:1403.5343v1

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Physics and Astronomy, Center for Computation and Technology, Hearne Institute for Theoretical PhysicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations