Abstract
Quantum annealing is a promising approach for solving optimization problems, but like all other quantum information processing methods, it requires error correction to ensure scalability. In this work, we experimentally compare two quantum annealing correction (QAC) codes in the setting of antiferromagnetic chains, using two different quantum annealing processors. The lower-temperature processor gives rise to higher success probabilities. The two codes differ in a number of interesting and important ways, but both require four physical qubits per encoded qubit. We find significant performance differences, which we explain in terms of the effective energy boost provided by the respective redundantly encoded logical operators of the two codes. The code with the higher energy boost results in improved performance, at the expense of a lower-degree encoded graph. Therefore, we find that there exists an important trade-off between encoded connectivity and performance for quantum annealing correction codes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
It was shown in Ref. [42] that in general this is related to the per-site percolation threshold of the encoded graph, though this is not relevant in the case of chains.
Both processors have meanwhile been dismantled.
See Ref. [41] for an analytically solvable model that exhibits an increased gap via this mechanism.
References
Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541), 66–69 (2015)
Corcoles, A.D., Magesan, E., Srinivasan, S.J., Cross, A.W., Steffen, M., Gambetta, J.M., Chow, J.M.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6 (2015). doi:10.1038/ncomms7979
Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)
Buluta, I., Nori, F.: Quantum simulators. Science 326(5949), 108–111 (2009)
Barreiro, J.T., Muller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature 470(7335), 486–491 (2011)
Finnila, A.B., Gomez, M.A., Sebenik, C., Stenson, C., Doll, J.D.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219(5–6), 343–348 (1994). doi:10.1016/0009-2614(94)00117-0
Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355–5363 (1998). doi:10.1103/PhysRevE.58.5355
Brooke, J., Bitko, D., Aeppli, G.: Quantum annealing of a disordered magnet. Science 284(5415), 779–781 (1999). doi:10.1126/science.284.5415.779
Brooke, J., Rosenbaum, T.F., Aeppli, G.: Tunable quantum tunnelling of magnetic domain walls. Nature 413(6856), 610–613 (2001). doi:10.1038/35098037
Kaminsky, W.M., Lloyd, S.: Scalable architecture for adiabatic quantum computing of NP-hard problems. In: Leggett, A., Ruggiero, B., Silvestrini, P. (eds.) Quantum Computing and Quantum Bits in Mesoscopic Systems. Kluwer Academic Publishers (2004). arXiv:quant-ph/0211152
Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). doi:10.1038/nature10012
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum Computation by Adiabatic Evolution. arXiv:quant-ph/0001106
Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001). doi:10.1126/science.1057726
Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15(10), 3241–3253 (1982)
Kato, T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5, 435 (1950). doi:10.1143/JPSJ.5.435
Jansen, S., Ruskai, M.-B., Seiler, R.: Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48(10), 10211 (2007). doi:10.1063/1.2798382
Lidar, D.A., Rezakhani, A.T., Hamma, A.: Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. J. Math. Phys. 50(10), 102106 (2009). doi:10.1063/1.3236685
Childs, A.M., Farhi, E., Preskill, J.: Robustness of adiabatic quantum computation. Phys. Rev. A 65(1), 012322 (2001). doi:10.1103/PhysRevA.65.012322
Sarandy, M.S., Lidar, D.A.: Adiabatic quantum computation in open systems. Phys. Rev. Lett. 95(25), 250503 (2005). doi:10.1103/PhysRevLett.95.250503
Aberg, J., Kult, D., Sjöqvist, E.: Quantum adiabatic search with decoherence in the instantaneous energy eigenbasis. Phys. Rev. A 72(4), 042317 (2005). doi:10.1103/PhysRevA.72.042317
Roland, J., Cerf, N.J.: Noise resistance of adiabatic quantum computation using random matrix theory. Phys. Rev. A 71, 032330 (2005). doi:10.1103/PhysRevA.71.032330
Amin, M.H.S., Averin, D.V., Nesteroff, J.A.: Decoherence in adiabatic quantum computation. Phys. Rev. A 79(2), 022107 (2009). doi:10.1103/PhysRevA.79.022107
Albash, T., Lidar, D.A.: Decoherence in adiabatic quantum computation. Phys. Rev. A 91(6), 062320 (2015). doi:10.1103/PhysRevA.91.062320
Young, K.C., Blume-Kohout, R., Lidar, D.A.: Adiabatic quantum optimization with the wrong Hamiltonian. Phys. Rev. A 88(6), 062314 (2013). doi:10.1103/PhysRevA.88.062314
Lidar, D., Brun, T. (eds.): Quantum Error Correction. Cambridge University Press, Cambridge (2013)
Jordan, S.P., Farhi, E., Shor, P.W.: Error-correcting codes for adiabatic quantum computation. Phys. Rev. A 74(5), 052322 (2006). doi:10.1103/PhysRevA.74.052322
Lidar, D.A.: Towards fault tolerant adiabatic quantum computation. Phys. Rev. Lett. 100(16), 160506 (2008). doi:10.1103/PhysRevLett.100.160506
Quiroz, G., Lidar, D.A.: High-fidelity adiabatic quantum computation via dynamical decoupling. Phys. Rev. A 86, 042333 (2012). doi:10.1103/PhysRevA.86.042333
Ganti, A., Onunkwo, U., Young, K.: Family of [[6k,2k,2]] codes for practical, scalable adiabatic quantum computation. Phys. Rev. A 89(4), 042313 (2014). doi:10.1103/PhysRevA.89.042313
Bookatz, A.D., Farhi, E., Zhou, L.: Error suppression in Hamiltonian-based quantum computation using energy penalties. Phys. Rev. A 92(2), 022317 (2015). doi:10.1103/PhysRevA.92.022317
Young, K.C., Sarovar, M., Blume-Kohout, R.: Error suppression and error correction in adiabatic quantum computation: techniques and challenges. Phys. Rev. X 3(4), 041013 (2013). doi:10.1103/PhysRevX.3.041013
Sarovar, M., Young, K.C.: Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics. New J. Phys. 15(12), 125032 (2013). doi:10.1088/1367-2630/15/12/125032
Marvian, I., Lidar, D.A.: Quantum error suppression with commuting Hamiltonians: two local is too local. Phys. Rev. Lett. 113(26), 260504 (2013). doi:10.1103/PhysRevLett.113.260504
Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 097–165 (2006)
Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)
Mizel, A.: Fault-Tolerant, Universal Adiabatic Quantum Computation. arXiv:1403.7694
Johnson, M.W., Bunyk, P., Maibaum, F., Tolkacheva, E., Berkley, A.J., Chapple, E.M., Harris, R., Johansson, J., Lanting, T., Perminov, I., Ladizinsky, E., Oh, T., Rose, G.: A scalable control system for a superconducting adiabatic quantum optimization processor. Supercond. Sci. Technol. 23(6), 065004 (2010). doi:10.1088/0953-2048/23/6/065004
Berkley, A.J., Johnson, M.W., Bunyk, P., Harris, R., Johansson, J., Lanting, T., Ladizinsky, E., Tolkacheva, E., Amin, M.H.S., Rose, G.: A scalable readout system for a superconducting adiabatic quantum optimization system. Supercond. Sci. Technol. 23(10), 105014 (2010). doi:10.1088/0953-2048/23/10/105014
Harris, R., Johnson, M.W., Lanting, T., Berkley, A.J., Johansson, J., Bunyk, P., Tolkacheva, E., Ladizinsky, E., Ladizinsky, N., Oh, T., Cioata, F., Perminov, I., Spear, P., Enderud, C., Rich, C., Uchaikin, S., Thom, M.C., Chapple, E.M., Wang, J., Wilson, B., Amin, M.H.S., Dickson, N., Karimi, K., Macready, B., Truncik, C.J.S., Rose, G.: Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511 (2010). doi:10.1103/PhysRevB.82.024511
Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, 3243 (2014). doi:10.1038/ncomms4243
Pudenz, K.L., Albash, T., Lidar, D.A.: Quantum annealing correction for random Ising problems. Phys. Rev. A 91(4), 042302 (2015). doi:10.1103/PhysRevA.91.042302
Vinci, W., Albash, T., Paz-Silva, G., Hen, I., Lidar, D.A.: Quantum annealing correction with minor embedding. Phys. Rev. A 92(4), 042310 (2015). doi:10.1103/PhysRevA.92.042310
Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014). doi:10.3389/fphy.2014.00005
Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014). doi:10.1126/science.1252319
Matsuura, S., Nishimori, H., Albash, T., Lidar, D. A.: Mean Field Analysis of Quantum Annealing Correction. arXiv:1510.07709
Albash, T., Boixo, S., Lidar, D.A., Zanardi, P.: Quantum adiabatic Markovian master equations. New J. Phys. 14(12), 123016 (2012). doi:10.1088/1367-2630/14/12/123016
Reed, M.D., Dicarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012). doi:10.1038/nature10786
Amin, M.H.S., Love, P.J., Truncik, C.J.S.: Thermally assisted adiabatic quantum computation. Phys. Rev. Lett. 100, 060503 (2008). doi:10.1103/PhysRevLett.100.060503
Author information
Authors and Affiliations
Corresponding author
Additional information
Access to the D-Wave Two quantum annealers was made available by the USC-Lockheed Martin Quantum Computing Center and D-Wave Systems Inc. This work was supported under ARO Grant Number W911NF-12-1-0523, ARO MURI Grant No. W911NF-11-1-0268, NSF Grant No. CCF-1551064, and Fermilab Grant No. 622302. A.M. was also supported by the USC Provost Ph.D. fellowship.
Appendices
Appendix 1: Optimizing \({\pmb \gamma }\)
For each chain instance, we identified the optimal penalty coupling strength \(\gamma \) by varying it in increments of 0.1 in the range [0, 1]. This is shown in Figs. 17, 18, 19, and 20 where we plot the success probability as a function of \(\gamma \) and \(\overline{N}\). We note that for the \({[4,1,4]}_{0}\) code the optimal penalty scales with \(\alpha \), i.e., \(\gamma _{\text {opt}}\propto \alpha \). Lower values of \(\gamma _{\text {opt}}\) are observed on the S6 device. For the \({[3,1,3]}_{1}\) code, the optimal \(\gamma \) is around \(\gamma \approx 0.2\)–0.3 for all \(\alpha \) values studied, and the optimal values are unchanged across the two devices.
Appendix 2: Comparing decoding strategies
In the main text, we compared four strategies: U, C, the \({[4,1,4]}_{0}\) code, and \({[3,1,3]}_{1}\) code. We also used different decoding strategies: EM, EP, and CT. Figures 21 and 22 show all these strategies for a few chosen values of the scaling parameter \(\alpha \) for the DW2-ISI and S6 devices, respectively. The U strategy is always worst. The \({[3,1,3]}_{1}\) code can be seen to outperform all other strategies at each \(\alpha \) value for sufficiently long chains. The \({[4,1,4]}_{0}\) code outperforms the C strategy below a device-dependent \(\alpha \) value and for sufficiently long chains. The fact that the success probabilities of the CT and EM strategies are nearly equal suggests that there are very few tied qubits in the \({[4,1,4]}_{0}\)-encoded chains, an observation that holds for both devices.
In the main text, we also presented indirect evidence for the small number of ties in the \({[4,1,4]}_{0}\) code. Figure 23 shows this directly.
Rights and permissions
About this article
Cite this article
Mishra, A., Albash, T. & Lidar, D.A. Performance of two different quantum annealing correction codes. Quantum Inf Process 15, 609–636 (2016). https://doi.org/10.1007/s11128-015-1201-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1201-z