Quantum Information Processing

, Volume 15, Issue 2, pp 609–636 | Cite as

Performance of two different quantum annealing correction codes

  • Anurag MishraEmail author
  • Tameem Albash
  • Daniel A. Lidar


Quantum annealing is a promising approach for solving optimization problems, but like all other quantum information processing methods, it requires error correction to ensure scalability. In this work, we experimentally compare two quantum annealing correction (QAC) codes in the setting of antiferromagnetic chains, using two different quantum annealing processors. The lower-temperature processor gives rise to higher success probabilities. The two codes differ in a number of interesting and important ways, but both require four physical qubits per encoded qubit. We find significant performance differences, which we explain in terms of the effective energy boost provided by the respective redundantly encoded logical operators of the two codes. The code with the higher energy boost results in improved performance, at the expense of a lower-degree encoded graph. Therefore, we find that there exists an important trade-off between encoded connectivity and performance for quantum annealing correction codes.


Quantum computation Quantum error correction Quantum annealing Error correction Quantum optimization Superconducting flux qubits Transverse field Ising model Spin chains 


  1. 1.
    Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541), 66–69 (2015)CrossRefADSGoogle Scholar
  2. 2.
    Corcoles, A.D., Magesan, E., Srinivasan, S.J., Cross, A.W., Steffen, M., Gambetta, J.M., Chow, J.M.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6 (2015). doi: 10.1038/ncomms7979
  3. 3.
    Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Buluta, I., Nori, F.: Quantum simulators. Science 326(5949), 108–111 (2009)CrossRefADSGoogle Scholar
  5. 5.
    Barreiro, J.T., Muller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature 470(7335), 486–491 (2011)CrossRefADSGoogle Scholar
  6. 6.
    Finnila, A.B., Gomez, M.A., Sebenik, C., Stenson, C., Doll, J.D.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219(5–6), 343–348 (1994). doi: 10.1016/0009-2614(94)00117-0 CrossRefADSGoogle Scholar
  7. 7.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355–5363 (1998). doi: 10.1103/PhysRevE.58.5355 CrossRefADSGoogle Scholar
  8. 8.
    Brooke, J., Bitko, D., Aeppli, G.: Quantum annealing of a disordered magnet. Science 284(5415), 779–781 (1999). doi: 10.1126/science.284.5415.779 CrossRefADSGoogle Scholar
  9. 9.
    Brooke, J., Rosenbaum, T.F., Aeppli, G.: Tunable quantum tunnelling of magnetic domain walls. Nature 413(6856), 610–613 (2001). doi: 10.1038/35098037 CrossRefADSGoogle Scholar
  10. 10.
    Kaminsky, W.M., Lloyd, S.: Scalable architecture for adiabatic quantum computing of NP-hard problems. In: Leggett, A., Ruggiero, B., Silvestrini, P. (eds.) Quantum Computing and Quantum Bits in Mesoscopic Systems. Kluwer Academic Publishers (2004). arXiv:quant-ph/0211152
  11. 11.
    Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). doi: 10.1038/nature10012 CrossRefADSGoogle Scholar
  12. 12.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum Computation by Adiabatic Evolution. arXiv:quant-ph/0001106
  13. 13.
    Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001). doi: 10.1126/science.1057726 CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15(10), 3241–3253 (1982)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Kato, T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5, 435 (1950). doi: 10.1143/JPSJ.5.435 CrossRefADSGoogle Scholar
  16. 16.
    Jansen, S., Ruskai, M.-B., Seiler, R.: Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48(10), 10211 (2007). doi: 10.1063/1.2798382 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Lidar, D.A., Rezakhani, A.T., Hamma, A.: Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. J. Math. Phys. 50(10), 102106 (2009). doi: 10.1063/1.3236685 CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Childs, A.M., Farhi, E., Preskill, J.: Robustness of adiabatic quantum computation. Phys. Rev. A 65(1), 012322 (2001). doi: 10.1103/PhysRevA.65.012322 CrossRefADSGoogle Scholar
  19. 19.
    Sarandy, M.S., Lidar, D.A.: Adiabatic quantum computation in open systems. Phys. Rev. Lett. 95(25), 250503 (2005). doi: 10.1103/PhysRevLett.95.250503 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Aberg, J., Kult, D., Sjöqvist, E.: Quantum adiabatic search with decoherence in the instantaneous energy eigenbasis. Phys. Rev. A 72(4), 042317 (2005). doi: 10.1103/PhysRevA.72.042317 CrossRefADSGoogle Scholar
  21. 21.
    Roland, J., Cerf, N.J.: Noise resistance of adiabatic quantum computation using random matrix theory. Phys. Rev. A 71, 032330 (2005). doi: 10.1103/PhysRevA.71.032330 CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Amin, M.H.S., Averin, D.V., Nesteroff, J.A.: Decoherence in adiabatic quantum computation. Phys. Rev. A 79(2), 022107 (2009). doi: 10.1103/PhysRevA.79.022107 CrossRefADSGoogle Scholar
  23. 23.
    Albash, T., Lidar, D.A.: Decoherence in adiabatic quantum computation. Phys. Rev. A 91(6), 062320 (2015). doi: 10.1103/PhysRevA.91.062320 CrossRefADSGoogle Scholar
  24. 24.
    Young, K.C., Blume-Kohout, R., Lidar, D.A.: Adiabatic quantum optimization with the wrong Hamiltonian. Phys. Rev. A 88(6), 062314 (2013). doi: 10.1103/PhysRevA.88.062314 CrossRefADSGoogle Scholar
  25. 25.
    Lidar, D., Brun, T. (eds.): Quantum Error Correction. Cambridge University Press, Cambridge (2013)Google Scholar
  26. 26.
    Jordan, S.P., Farhi, E., Shor, P.W.: Error-correcting codes for adiabatic quantum computation. Phys. Rev. A 74(5), 052322 (2006). doi: 10.1103/PhysRevA.74.052322 CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Lidar, D.A.: Towards fault tolerant adiabatic quantum computation. Phys. Rev. Lett. 100(16), 160506 (2008). doi: 10.1103/PhysRevLett.100.160506 CrossRefADSGoogle Scholar
  28. 28.
    Quiroz, G., Lidar, D.A.: High-fidelity adiabatic quantum computation via dynamical decoupling. Phys. Rev. A 86, 042333 (2012). doi: 10.1103/PhysRevA.86.042333 CrossRefADSGoogle Scholar
  29. 29.
    Ganti, A., Onunkwo, U., Young, K.: Family of [[6k,2k,2]] codes for practical, scalable adiabatic quantum computation. Phys. Rev. A 89(4), 042313 (2014). doi: 10.1103/PhysRevA.89.042313 CrossRefADSGoogle Scholar
  30. 30.
    Bookatz, A.D., Farhi, E., Zhou, L.: Error suppression in Hamiltonian-based quantum computation using energy penalties. Phys. Rev. A 92(2), 022317 (2015). doi: 10.1103/PhysRevA.92.022317 CrossRefADSGoogle Scholar
  31. 31.
    Young, K.C., Sarovar, M., Blume-Kohout, R.: Error suppression and error correction in adiabatic quantum computation: techniques and challenges. Phys. Rev. X 3(4), 041013 (2013). doi: 10.1103/PhysRevX.3.041013 Google Scholar
  32. 32.
    Sarovar, M., Young, K.C.: Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics. New J. Phys. 15(12), 125032 (2013). doi: 10.1088/1367-2630/15/12/125032 CrossRefADSGoogle Scholar
  33. 33.
    Marvian, I., Lidar, D.A.: Quantum error suppression with commuting Hamiltonians: two local is too local. Phys. Rev. Lett. 113(26), 260504 (2013). doi: 10.1103/PhysRevLett.113.260504 CrossRefGoogle Scholar
  34. 34.
    Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 097–165 (2006)MathSciNetGoogle Scholar
  35. 35.
    Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)CrossRefADSGoogle Scholar
  36. 36.
    Mizel, A.: Fault-Tolerant, Universal Adiabatic Quantum Computation. arXiv:1403.7694
  37. 37.
    Johnson, M.W., Bunyk, P., Maibaum, F., Tolkacheva, E., Berkley, A.J., Chapple, E.M., Harris, R., Johansson, J., Lanting, T., Perminov, I., Ladizinsky, E., Oh, T., Rose, G.: A scalable control system for a superconducting adiabatic quantum optimization processor. Supercond. Sci. Technol. 23(6), 065004 (2010). doi: 10.1088/0953-2048/23/6/065004 CrossRefADSGoogle Scholar
  38. 38.
    Berkley, A.J., Johnson, M.W., Bunyk, P., Harris, R., Johansson, J., Lanting, T., Ladizinsky, E., Tolkacheva, E., Amin, M.H.S., Rose, G.: A scalable readout system for a superconducting adiabatic quantum optimization system. Supercond. Sci. Technol. 23(10), 105014 (2010). doi: 10.1088/0953-2048/23/10/105014 CrossRefADSGoogle Scholar
  39. 39.
    Harris, R., Johnson, M.W., Lanting, T., Berkley, A.J., Johansson, J., Bunyk, P., Tolkacheva, E., Ladizinsky, E., Ladizinsky, N., Oh, T., Cioata, F., Perminov, I., Spear, P., Enderud, C., Rich, C., Uchaikin, S., Thom, M.C., Chapple, E.M., Wang, J., Wilson, B., Amin, M.H.S., Dickson, N., Karimi, K., Macready, B., Truncik, C.J.S., Rose, G.: Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511 (2010). doi: 10.1103/PhysRevB.82.024511 CrossRefADSGoogle Scholar
  40. 40.
    Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, 3243 (2014). doi: 10.1038/ncomms4243 CrossRefADSGoogle Scholar
  41. 41.
    Pudenz, K.L., Albash, T., Lidar, D.A.: Quantum annealing correction for random Ising problems. Phys. Rev. A 91(4), 042302 (2015). doi: 10.1103/PhysRevA.91.042302 CrossRefADSGoogle Scholar
  42. 42.
    Vinci, W., Albash, T., Paz-Silva, G., Hen, I., Lidar, D.A.: Quantum annealing correction with minor embedding. Phys. Rev. A 92(4), 042310 (2015). doi: 10.1103/PhysRevA.92.042310 CrossRefADSGoogle Scholar
  43. 43.
    Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014). doi: 10.3389/fphy.2014.00005 CrossRefGoogle Scholar
  44. 44.
    Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014). doi: 10.1126/science.1252319 CrossRefADSGoogle Scholar
  45. 45.
    Matsuura, S., Nishimori, H., Albash, T., Lidar, D. A.: Mean Field Analysis of Quantum Annealing Correction. arXiv:1510.07709
  46. 46.
    Albash, T., Boixo, S., Lidar, D.A., Zanardi, P.: Quantum adiabatic Markovian master equations. New J. Phys. 14(12), 123016 (2012). doi: 10.1088/1367-2630/14/12/123016 CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    Reed, M.D., Dicarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012). doi: 10.1038/nature10786 CrossRefADSGoogle Scholar
  48. 48.
    Amin, M.H.S., Love, P.J., Truncik, C.J.S.: Thermally assisted adiabatic quantum computation. Phys. Rev. Lett. 100, 060503 (2008). doi: 10.1103/PhysRevLett.100.060503 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Center for Quantum Information Science and TechnologyUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Information Sciences InstituteUniversity of Southern CaliforniaMarina del ReyUSA
  4. 4.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  5. 5.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations