Quantum Information Processing

, Volume 15, Issue 2, pp 913–927 | Cite as

Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects

Article

Abstract

We study quantum teleportation between two different types of optical qubits using hybrid entanglement as a quantum channel under decoherence effects. One type of qubit employs the vacuum and single-photon states for the basis, called a single-rail single-photon qubit, and the other utilizes coherent states of opposite phases. We find that teleportation from a single-rail single-photon qubit to a coherent-state qubit is better than the opposite direction in terms of fidelity and success probability. We compare our results with those using a different type of hybrid entanglement between a polarized single-photon qubit and a coherent state.

Keywords

Quantum teleportation Quantum information processing  Optical qubit 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) through a Grant funded by the Korean government (MSIP) (Grant No. 2010-0018295).

References

  1. 1.
    Bouwmeester, D., Pan, J., Mattle, K., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575–579 (1997)CrossRefADSGoogle Scholar
  2. 2.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46–52 (2001)CrossRefADSGoogle Scholar
  3. 3.
    Lee, H.-W., Kim, J.: Quantum teleportation and Bell’s inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Lund, A.P., Ralph, T.C.: Nondeterministic gates for photonic single-rail quantum logic. Phys. Rev. A 66, 032307 (2002)CrossRefADSGoogle Scholar
  5. 5.
    Cochrane, P.T., Milburn, G.J., Munro, W.J.: Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys. Rev. A 59, 2631–2634 (1998)CrossRefADSGoogle Scholar
  6. 6.
    Van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 63, 022313 (2001)CrossRefGoogle Scholar
  7. 7.
    Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)CrossRefADSGoogle Scholar
  8. 8.
    Jeong, H., Kim, M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Ralph, T.C., Gilchrist, A., Milburn, G.J., Munro, W.J., Glancy, S.: Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003)CrossRefADSGoogle Scholar
  10. 10.
    Lund, A.P., Ralph, T.C., Haselgrove, H.L.: Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008)CrossRefADSGoogle Scholar
  11. 11.
    Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)CrossRefADSGoogle Scholar
  12. 12.
    Ralph, T.C., Pryde, G.J.: Optical quantum computation. Prog. Optics. 54, 209–269 (2009)Google Scholar
  13. 13.
    Park, K., Jeong, H.: Entangled coherent states versus entangled photon pairs for practical quantum-information processing. Phys. Rev. A 82, 062325 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Kim, H., Park, J., Jeong, H.: Transfer of different types of optical qubits over a lossy environment. Phys. Rev. A 89, 042303 (2014)CrossRefADSGoogle Scholar
  15. 15.
    Jeong, H., Kim, M.S.: Purification of entangled coherent states. Quantum Inf. Comput. 2, 208–221 (2002)MathSciNetMATHGoogle Scholar
  16. 16.
    Kwon, H., Jeong, H.: Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A 91, 012340 (2015)CrossRefADSGoogle Scholar
  17. 17.
    Lee, S.-W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2002)CrossRefADSGoogle Scholar
  18. 18.
    Rigas, J., Gühne, O., Lütkenhaus, N.: Entanglement verification for quantum-key-distribution systems with an underlying bipartite qubit-mode structure. Phys. Rev. A 73, 012341 (2006)CrossRefADSGoogle Scholar
  19. 19.
    Kwon, H., Jeong, H.: Violation of the Bell–Clauser–Horne–Shimony–Holt inequality using imperfect photodetectors with optical hybrid states. Phys. Rev. A 88, 052127 (2013)CrossRefADSGoogle Scholar
  20. 20.
    van Loock, P.: Optical hybrid approaches to quantum information. Laser Photon. Rev. 5, 167–200 (2011)CrossRefGoogle Scholar
  21. 21.
    Furusawa, A., van Loock, P.: Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing. Wiley, New York (2011)CrossRefGoogle Scholar
  22. 22.
    Park, K., Lee, S.-W., Jeong, H.: Quantum teleportation between particlelike and fieldlike qubits using hybrid entanglement under decoherence effects. Phys. Rev. A 86, 062301 (2012)CrossRefADSGoogle Scholar
  23. 23.
    Sheng, Y.-B., Zhou, L., Long, G.-L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)CrossRefADSGoogle Scholar
  24. 24.
    Andersen, U.L., Neergaard-Nielsen, J.S., van Loock, P., Furusawa, A.: Hybrid quantum information processing. http://arxiv.org/abs/1409.3719
  25. 25.
    Takeda, S., Fuwa, M., Van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501 (2014)CrossRefGoogle Scholar
  26. 26.
    Gerry, C.C.: Generation of optical macroscopic quantum superposition states via state reduction with a Mach–Zehnder interferometer containing a Kerr medium. Phys. Rev. A 59, 4095–4098 (1999)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)CrossRefADSGoogle Scholar
  28. 28.
    Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005)CrossRefADSGoogle Scholar
  29. 29.
    Shapiro, J.H.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006)CrossRefADSGoogle Scholar
  30. 30.
    Shapiro, J., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007)CrossRefADSGoogle Scholar
  31. 31.
    Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010)CrossRefADSGoogle Scholar
  32. 32.
    Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, Ph: Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007)CrossRefADSGoogle Scholar
  33. 33.
    Jeong, H., Zavatta, A., Kang, M., Lee, S.W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nat. Photonics 8, 564–569 (2014)CrossRefADSGoogle Scholar
  34. 34.
    Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)Google Scholar
  35. 35.
    Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132–5138 (1990)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Calsamiglia, J., Lütkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 6771 (2001)CrossRefGoogle Scholar
  37. 37.
    Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)Google Scholar
  38. 38.
    Knill, E.: Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)CrossRefADSGoogle Scholar
  39. 39.
    Jeong, H., Kang, M., Kwon, H.: Characterizations and quantifications of macroscopic quantumness and its implementations using optical fields. Opt. Commun. 337, 12–21 (2015)CrossRefADSGoogle Scholar
  40. 40.
    Lütkenhaus, N., Calsamiglia, J., Suominen, K.-A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, Center for Macroscopic Quantum ControlSeoul National UniversitySeoulKorea

Personalised recommendations