Skip to main content
Log in

Atom–photon entanglement beyond the multi-photon resonance condition

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Atom–photon entanglement between the dressed atom and its spontaneous emission is studied in a near-degenerate three-level V-type atomic system in multi-photon resonance condition and beyond it. Taking into account the quantum interference due to the spontaneous emission, the density matrix equations of motion are numerically calculated in two-photon resonance condition and beyond it. The dynamical behavior of these two subsystems is investigated by using the von Neumann entropy. We apply the Floquet decomposition to the equations of motion to solve this time-dependent problem and identify the contribution of the different scattering processes to the atom–photon entanglement. In addition, the impact of the various nonlinear effects on the atom–photon entanglement is introduced in two-photon resonance condition. It is shown that the degree of entanglement (DEM) can be controlled via the intensity and the detuning of the coupling field as well as the quantum interference induced by spontaneous emission. We find that vacuum-induced interference has a major role in phase sensitivity of the DEM; however, beyond the two-photon resonance condition the DEM does not depend on the relative phase of the applied fields. Our results can be used for quantum information processing via entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrodinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften 23, 807–812; 823–828; 844–849 (1935)

  3. http://www.informationphilosopher.com/solutions/experiments/EPR/

  4. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Burgarth, D.K., Facchi, P., Giovannetti, V., Nakazato, H., Pascazio, S., Yuasa, K.: Exponential rise of dynamical complexity in quantum computing through projections. Nat. Commun. 5, 5173 (2014)

    Article  ADS  Google Scholar 

  7. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Classical and quantum communication without a shared reference frame. Phys. Rev. Lett. 91(2), 027901 (2003)

    Article  ADS  Google Scholar 

  8. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

  9. Berry, D.W., Sanders, B.C.: Quantum teleportation and entanglement swapping for spin systems. New J. Phys. 4, 8 (2002)

    MathSciNet  ADS  Google Scholar 

  10. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correction code. Phys. Rev. Lett. 77, 198–201 (1996)

    Article  ADS  Google Scholar 

  12. Plenio, M.B., Vedral, V., Knight, P.L.: Quantum error correction in the presence of spontaneous emission. Phys. Rev. A 55, 67–71 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  13. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Marcikic, I., De Riedmatten, H., Tittel, W., Zbinden, H., Legr, M., Gisin, N.: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004)

    Article  ADS  Google Scholar 

  15. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Omer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)

    Article  Google Scholar 

  16. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  MATH  Google Scholar 

  17. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  18. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)

    Article  ADS  Google Scholar 

  19. Ekert, A., Josza, R.: Quantum algorithms: entanglement enhanced information processing. Phil. Trans. R. Soc. Lond. A 356, 1769–1782 (1998)

    Article  ADS  MATH  Google Scholar 

  20. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    Article  ADS  Google Scholar 

  21. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  22. Linden, N., Popescu, S.: Good dynamics versus bad kinematics: Is entanglement needed for quantum computation? Phys. Rev. Lett. 87, 047901 (2001)

    Article  ADS  Google Scholar 

  23. Josza, R., Linden, N.: On the role of the entanglement in quantum computational speed-up. Proc. R. Soc. Lond. A 459, 2011–2032 (2003)

    Article  ADS  Google Scholar 

  24. Nielsen, M.A.: Quantum computation by measurement and quantum memory. Phys. Lett. A. 308, 96–100 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Biham, E., Brassard, G., Kenigsberg, D., Mor, T.: Quantum computing without entanglement. Theor. Comput. Sci. 320, 15–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H., Hofferberth, S.: Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014)

    Article  ADS  Google Scholar 

  27. http://photon.physnet.uni-hamburg.de/ilp/hemmerich/research/cavity-qed-with-ultracold-atomic-ensembles/

  28. Keßler, H., Klinder, J., Wolke, M., Hemmerich, A.: Optomechanical atom–cavity interaction in the sub-recoil regime. New J. Phys. 16, 053008 (2014)

    Article  ADS  Google Scholar 

  29. Sherson, J.F., Krauter, H., Olsson, R.K., Julsgaard, B., Hammerer, Cirac, K.I., Polzik, E.S.: Quantum teleportation between light and matter. Nature 443(7111), 557 (2006)

    Article  ADS  Google Scholar 

  30. Chen, S., Chen, Y.A., Zhao, B., Yuan, Z.S., Schmiedmayer, J., Pan, J.W.: Demonstration of a stable atom-photon entanglement source for quantum repeaters. Phys. Rev. Lett. 99, 180505 (2007)

    Article  ADS  Google Scholar 

  31. Li, L., Dudin, Y.O., Kuzmich, A.: Entanglement between light and an optical atomic excitation. Nature 498, 466–469 (2013)

    Article  ADS  Google Scholar 

  32. Fang, M.F., Zhu, S.Y.: Entanglement between a \(\Lambda \)-type three-level atom and its spontaneous emission fields. Phys. A 369, 475–483 (2006)

    Article  Google Scholar 

  33. Tang, Z.H., Li, G.X., Ficek, Z.: Entanglement created by spontaneously generated coherence. Phys. Rev. A 82, 063837 (2010)

    Article  ADS  Google Scholar 

  34. Roshan Entezar, S.: Entanglement of a two-level atom and its spontaneous emission near the edge of a photonic band gap. Phys. Lett. A 373, 3413–3418 (2009)

    Article  ADS  MATH  Google Scholar 

  35. Mortezapour, A., Abedi, M., Mahmoudi, M., Khajehpour, M.R.H.: The effect of a coupling field on the entanglement dynamics of a three-level atom. J. Phys. B 44, 085501 (2011)

    Article  ADS  Google Scholar 

  36. Ficek, Z., Rudolph, T.: Quantum interference in a driven two-level atom. Phys. Rev. A 60, R4245 (1999)

    Article  ADS  Google Scholar 

  37. Agarwal, G.S.: Quantum statistical theories of spontaneous emission and their relation to other approaches. In: Hohler, G. (Ed.) Springer Tracts in Modern Physics, vol. 70. Springer, Berlin (1974)

  38. Joshi, A., Yang, W., Xiao, M.: Effect of quantum interference on optical bistability in the three-level V-type atomic system. Phys. Rev. A 68, 015806 (2003)

    Article  ADS  Google Scholar 

  39. Mousavi, S.M., Safari, L., Mahmoudi, M., Sahrai, M.: Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition. J. Phys. B: At. Mol. Opt. Phys. 43, 165501 (2010)

    Article  ADS  Google Scholar 

  40. Sahrai, M., Noshad, H., Mahmoudi, M.: Entanglement of an atom and its spontaneous emission fields via spontaneously generated coherence. J. Sci. Islam. Repub. Iran 22, 171–176 (2011)

    Google Scholar 

  41. Roshan Entezar, S.: Disentanglement of atom–photon via quantum interference in driven three-level atoms. Opt. Comm. 282, 1171–1174 (2009)

    Article  ADS  Google Scholar 

  42. Abazari, M., Mortezapour, A., Mahmoudi, M., Sahrai, M.: Phase-controlled atom–photon entanglement in a three-level V-type atomic system via spontaneously generated coherence. Entropy 13, 1541–1554 (2011)

    Article  ADS  MATH  Google Scholar 

  43. Mortezapour, A., Kordi, Z., Mahmoudi, M.: Phase-controlled atom–photon entanglement in a three-level \(\Lambda \)-type closed-loop atomic system. Chin. Phys. B 22, 060310 (2013)

    Article  Google Scholar 

  44. Kordi, Z., Ghanbari, S., Mahmoudi, M.: Maximal atom–photon entanglement in a double-\(\Lambda \) quantum system. Quantum Inf. Process. 14, 1907–1918 (2015)

    Article  ADS  Google Scholar 

  45. Mahmoudi, M., Evers, J.: Light propagation through closed-loop atomic media beyond the multiphoton resonance condition. Phys. Rev. A 74, 063827 (2006)

    Article  ADS  Google Scholar 

  46. Floquet, M.G.: Sur les équationsdifférentielleslinéaires à coefficients périodiques. Ann. Sci. Ec. Norm. Super. 12, 47 (1883)

    MathSciNet  MATH  Google Scholar 

  47. Karimi, E., Boyd, R.W.: Ten years of Nature physics; slowly but surely. Nat. Phys. 11, 15–16 (2015)

    Article  Google Scholar 

  48. Fleischhauer, M., Lukin, M.D.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  49. Wong, V., Boyd, R.W., Stroud, C.R., Ryan Jr, Bennink, S., Aronstein, D.L.: Absorptionless self-phase-modulation via dark-state electromagnetically induced transparency. Phys. Rev. A 65, 013810 (2001)

    Article  ADS  Google Scholar 

  50. Kaltenhauser, B., Kubler, H., Chromik, A., Stuhler, J., Pfau, T., Imamoglu, A.: Narrow bandwidth electromagnetically induced transparency in optically trapped atoms. J. Phys. B: At. Mol. Opt. Phys. 40, 1907 (2007)

    Article  ADS  Google Scholar 

  51. Zhao, J., Wang, L., Xiao, L., Zhao, Y., Yin, W., Jia, S.: Experimental measurement of absorption and dispersion in V-type cesium atom. Opt. Comm. 206, 341–345 (2002)

    Article  ADS  Google Scholar 

  52. Chu, S.I., Telnov, D.A.: Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields. Phys. Rep. 390, 1–131 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  53. Jungnitsch, B., Evers, J.: Parametric and nonparametric magnetic response enhancement via electrically induced magnetic moments. Phys. Rev. A 78, 043817 (2008)

    Article  ADS  Google Scholar 

  54. Hu, X.-M., Du, D., Cheng, G.-L., Zou, J.-H., Li, X.: Switching from positive to negative dispersion in a three-level V system driven by a single coherent field. J. Phys. B: At. Mol. Opt. Phys. 38, 827–838 (2005)

    Article  ADS  Google Scholar 

  55. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633 (1998)

    Article  ADS  Google Scholar 

  56. Araki, H., Lieb, E.: Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  57. Phoenix, S.J.D., Knight, P.L.: Fluctuation and entropy in models of quantum optical resonance. Ann. Phys. 186, 381–407 (1988)

    Article  ADS  MATH  Google Scholar 

  58. Loss, M., Ruskai, M.B.: Inequalities: Selecta of Elliott H. Lieb. Springer, Berlin (2002)

    Book  Google Scholar 

  59. Mahmoudi, M., Tajalli, H., Zubairy, M.S.: Measurement of Wigner function of a cavity field via Autler–Townes spectroscopy. J. Opt. B 2, 315–322 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahmoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordi, Z., Ghanbari, S. & Mahmoudi, M. Atom–photon entanglement beyond the multi-photon resonance condition. Quantum Inf Process 15, 199–213 (2016). https://doi.org/10.1007/s11128-015-1168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1168-9

Keywords

Navigation