Skip to main content
Log in

Renormalization of the global quantum correlation and monogamy relation in the anisotropic Heisenberg XXZ model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this study, the global quantum correlation, monogamy relation and quantum phase transition of the Heisenberg XXZ model are investigated by the method of quantum renormalization group. We obtain, analytically, the expressions of the global negativity, the global measurement-induced disturbance and the monogamy relation for the system. The result shows that for a three-site block state, the partial transpose of an asymmetric block can get stronger entanglement than that of the symmetric one. The residual entanglement and the difference of the monogamy relation of measurement-induced disturbance show a scaling behavior with the size of the system becoming large. Moreover, the monogamy nature of entanglement measured by negativity exists in the model, while the nonclassical correlation quantified by measurement-induced disturbance violates the monogamy relation and demonstrates polygamy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A 76, 060304 (2007)

    Article  ADS  Google Scholar 

  2. Ma, F.W., Liu, S.X., Kong, X.M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii–Moriya interaction. Phys. Rev. A 84, 042302 (2011)

    Article  ADS  Google Scholar 

  3. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  4. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  5. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  6. Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  7. Werlang, T., Rigolin, G.: Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 81, 044101 (2010)

    Article  ADS  Google Scholar 

  8. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  9. Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  10. Luo, S.L., Fu, S.S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  11. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  12. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  13. Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii–Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79, 042319 (2009)

    Article  ADS  Google Scholar 

  14. Langari, A., Pollmann, F., Siahatgar, M.: Ground-state fidelity of the spin-1 Heisenberg chain with single ion anisotropy: quantum renormalization group and exact diagonalization approaches. J. Phys. Condens. Matter 25, 406002 (2013)

    Article  Google Scholar 

  15. Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 78, 214414 (2008)

    Article  ADS  Google Scholar 

  16. Song, X.K., Wu, T., Ye, L.: Negativity and quantum phase transition in the anisotropic XXZ model. Eur. Phys. J. D 67, 96 (2013)

    Article  ADS  Google Scholar 

  17. Langari, A., Rezakhani, A.T.: Quantum renormalization group for ground-state fidelity. New J. Phys. 14, 053014 (2012)

    Article  ADS  Google Scholar 

  18. Ma, F.W., Liu, S.X., Kong, X.M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83, 062309 (2011)

    Article  ADS  Google Scholar 

  19. Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model. Phys. Rev. A 77, 032346 (2008)

    Article  ADS  Google Scholar 

  20. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  21. Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  22. Jafari, R., Langari, A.: Phase diagram of the one-dimensional S = 1 2 XXZ model with ferromagnetic nearest-neighbor and antiferromagnetic next–nearest–neighbor interactions. Phys. Rev. B 76, 014412 (2007)

    Article  ADS  Google Scholar 

  23. Canosa, N., Rossignoli, R.: Global entanglement in XXZ chains. Phys. Rev. A 73, 022347 (2006)

    Article  ADS  Google Scholar 

  24. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  25. Ma, X.S., Wang, A.M., Cao, Y.: Entanglement evolution of three-qubit states in a quantum-critical environment. Phys. Rev. B 76, 155327 (2007)

    Article  ADS  Google Scholar 

  26. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  27. Huang, J.H., Zhu, S.Y.: Entanglement monogamy in a three-qubit state. Phys. Rev. A 78, 012325 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  28. Verstraete, F., Audenaert, K., Dehaene, J., Moor, B.D.: A comparison of the entanglement measures negativity and concurrence. J. Phys. A 34, 10327–10332 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Hu, M.L., Fan, H.: Robustness of quantum correlations against decoherence. Ann. Phys. 327, 851–860 (2012)

    Article  ADS  MATH  Google Scholar 

  30. Song, X.K., Wu, T., Ye, L.: Quantum correlations and quantum phase transition in the Ising model with Dzyaloshinskii–Moriya interaction. Phys. A 394, 386–393 (2014)

    Article  MathSciNet  Google Scholar 

  31. Yao, Y., Li, H.W., Zhang, C.M., Yin, Z.Q., Chen, W., Guo, G.C., Han, Z.F.: Performance of various correlation measures in quantum phase transitions using the quantum renormalization-group method. Phys. Rev. A 86, 042102 (2012)

    Article  ADS  Google Scholar 

  32. Giorgi, G.L.: Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)

    Article  ADS  Google Scholar 

  33. Song, X.K., Wu, T., Ye, L.: The monogamy relation and quantum phase transition in one-dimensional anisotropic XXZ model. Quantum Inf. Process. 12, 3305–3317 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Xu, S., Song, X.K., Ye, L.: Monogamy of quantum correlations in the one-dimensional anisotropic XY model. Chin. Phys. B 23, 010302 (2014)

    Article  ADS  Google Scholar 

  35. Prabhu, R., Pati, A.K., Sen(De), A., Sen, U.: Conditions for monogamy of quantum correlations: Greenberger–Horne–Zeilinger versus W states. Phys. Rev. A 85, 040102 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11535004, 11375086, 11105079 and 10975072), by the Research and Innovation Project for College Postgraduate of JiangSu Province (Grant Nos. KYZZ15_0027), by the 973 National Major State Basic Research and Development of China (Grant Nos. 2010CB327803 and 2013CB834400), by CAS Knowledge Innovation project no KJCX2-SW-N02, by Research Fund of Doctoral Point (RFDP) (Grant Nos. 20100091110028), by the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and by the Deutsche Forschungsgemeinschaft through TRR80.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, M., Ren, ZZ. & Zhang, X. Renormalization of the global quantum correlation and monogamy relation in the anisotropic Heisenberg XXZ model. Quantum Inf Process 15, 255–267 (2016). https://doi.org/10.1007/s11128-015-1167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1167-x

Keywords

Navigation