Integrated optics architecture for trapped-ion quantum information processing

Abstract

Standard schemes for trapped-ion quantum information processing (QIP) involve the manipulation of ions in a large array of interconnected trapping potentials. The basic set of QIP operations, including state initialization, universal quantum logic, and state detection, is routinely executed within a single array site by means of optical operations, including various laser excitations as well as the collection of ion fluorescence. Transport of ions between array sites is also routinely carried out in microfabricated trap arrays. However, it is still not possible to perform optical operations in parallel across all array sites. The lack of this capability is one of the major obstacles to scalable trapped-ion QIP and presently limits exploitation of current microfabricated trap technology. Here we present an architecture for scalable integration of optical operations in trapped-ion QIP. We show theoretically that diffractive mirrors, monolithically fabricated on the trap array, can efficiently couple light between trap array sites and optical waveguide arrays. Integrated optical circuits constructed from these waveguides can be used for sequencing of laser excitation and fluorescence collection. Our scalable architecture supports all standard QIP operations, as well as photon-mediated entanglement channels, while offering substantial performance improvements over current techniques.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    ADS  Article  Google Scholar 

  3. 3.

    Monroe, C., Raussendorf, R., Ruthven, A., Brown, K., Maunz, P., Duan, L.M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89(2), 022317 (2014)

    ADS  Article  Google Scholar 

  4. 4.

    Duan, L.M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    Steane, A.M.: How to build a 300 bit, 1 giga-operation quantum computer. Quantum Inf. Comput. 7, 171–183 (2007)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Kim, J., Kim, C.: Integrated optical approach to trapped ion quantum computation. Quantum Inf. Comput. 9(3), 181–202 (2009)

    ADS  Google Scholar 

  7. 7.

    Streed, E.W., Norton, B.G., Chapman, J.J., Kielpinski, D.: Scalable, efficient ion–photon coupling with phase Fresnel lenses for large-scale quantum computing. Quantum Inf. Comput. 9, 0203–0214 (2009)

    Google Scholar 

  8. 8.

    VanDevender, A.P., Colombe, Y., Amini, J., Leibfried, D., Wineland, D.J.: Efficient fiber optic detection of trapped ion fluorescence. Phys. Rev. Lett. 105(2), 023001 (2010). doi:10.1103/PhysRevLett.105.023001

    ADS  Article  Google Scholar 

  9. 9.

    Streed, E.W., Norton, B.G., Jechow, A., Weinhold, T.J., Kielpinski, D.: Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106(1), 010502 (2011). doi:10.1103/PhysRevLett.106.010502

    ADS  Article  Google Scholar 

  10. 10.

    Kim, T.H., Herskind, P.F., Chuang, I.L.: Surface-electrode ion trap with integrated light source. Appl. Phys. Lett. 98(21), 214103 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    Brady, G., Ellis, A., Moehring, D., Stick, D., Highstrete, C., Fortier, K., Blain, M., Haltli, R., Cruz-Cabrera, A., Briggs, R., Wendt, J., Carter, T., Samora, S., Kemme, S.: Integration of fluorescence collection optics with a microfabricated surface electrode ion trap. Appl. Phys. B: Lasers Opt. (2011). doi:10.1007/s00340-011-4453-z

  12. 12.

    Merrill, J.T., Volin, C., Landgren, D., Amini, J.M., Wright, K., Doret, S.C., Pai, C., Hayden, H., Killian, T., Faircloth, D., et al.: Demonstration of integrated microscale optics in surface-electrode ion traps. New J. Phys. 13(10), 103005 (2011)

    Article  Google Scholar 

  13. 13.

    Eltony, A.M., Wang, S.X., Akselrod, G.M., Herskind, P.F., Chuang, I.L.: Transparent ion trap with integrated photodetector. Appl. Phys. Lett. 102(5), 054106 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    Jechow, A., Streed, E.W., Norton, B.G., Petrasiunas, M.J., Kielpinski, D.: Wavelength-scale imaging of trapped ions using a phase Fresnel lens. Opt. Lett. 36, 1371–1373 (2011)

    ADS  Article  Google Scholar 

  15. 15.

    Kim, C., Knoernschild, C., Liu, B., Kim, J.: Design and characterization of MEMS micromirrors for ion-trap quantum computation. IEEE J. Sel. Top. Quantum Electron. 13, 322–329 (2007)

    Article  Google Scholar 

  16. 16.

    Knoernschild, C., Kim, C., Liu, B., Lu, F.P., Kim, J.: MEMS-based optical beam steering system for quantum information processing in two-dimensional atomic systems. Opt. Lett. 33, 273–275 (2008)

    ADS  Article  Google Scholar 

  17. 17.

    Crain, S., Mount, E., Baek, S., Kim, J.: Individual addressing of trapped \(^{171}\text{ Yb }+\) ion qubits using a microelectromechanical systems-based beam steering system. Appl. Phys. Lett. 105(18), 181115 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    Gil, D., Menon, R., Smith, H.I.: The promise of diffractive optics in maskless lithography. Microelectron. Eng. 73–74, 35 (2004)

    Article  Google Scholar 

  19. 19.

    Cruz-Cabrera, A., Kemme, S., Wendt, J., Kielpinski, D., Streed, E., Carter, T., Samora, S.: High efficiency DOEs at large diffraction angles for quantum information and computing architectures. In: Integrated Optoelectronic Devices 2007, pp. 648–650. International Society for Optics and Photonics (2007)

  20. 20.

    Shiono, T., Kitagawa, M., Setsune, K., Mitsuyu, T.: Reflection micro-Fresnel lenses and their use in an integrated focus sensor. Appl. Opt. 28(16), 3434–3442 (1989)

    ADS  Article  Google Scholar 

  21. 21.

    Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  22. 22.

    Moharam, M.G., Grann, E.B., Pommet, D.A., Gaylord, T.K.: Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12(5), 1068–1076 (1995)

    ADS  Article  Google Scholar 

  23. 23.

    Ferstl, M., Kuhlow, B., Pawlowski, E.: Effect of fabrication errors on multilevel Fresnel zone lenses. Opt. Eng. 33(4), 1229–1235 (1994)

    ADS  Article  Google Scholar 

  24. 24.

    Orihara, Y., Klaus, W., Fujino, M., Kodate, K.: Optimization and application of hybrid-level binary zone plates. Appl. Opt. 40(32), 5877–5885 (2001)

    ADS  Article  Google Scholar 

  25. 25.

    O’Shea, D.C., Suleski, T.J., Kathman, A.D., Prather, D.W.: Diffractive Optics: Design, Fabrication, and Test. SPIE Press, Bellingham (2004)

    Google Scholar 

  26. 26.

    Bonneau, D., Lobino, M., Jiang, P., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Dorenbos, S.N., Zwiller, V., Thompson, M.G., O’Brien, J.L.: Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. Phys. Rev. Lett. 108, 053601 (2012). doi:10.1103/PhysRevLett.108.053601

    ADS  Article  Google Scholar 

  27. 27.

    Korkishko, Y.N., Fedorov, V.A.: Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics. Cambridge International Science Publishing, Cambridge (1999)

    Google Scholar 

  28. 28.

    Korkishko, Y.N., Fedorov, V.A., Morozova, T.M., Caccavale, F., Gonella, F., Segato, F.: Reverse proton exchange for buried waveguides in \(\text{ LiNbO }_3\). J. Opt. Soc. Am. A 15(7), 1838 (1998). doi:10.1364/JOSAA.15.001838. http://josaa.osa.org/abstract.cfm?URI=josaa-15-7-1838

  29. 29.

    Schmidt, R.V., Kaminow, I.P.: Metal-diffused optical waveguides in \(\text{ LiNbO }_3\). Appl. Phys. Lett. 25(8), 458–460 (1974). doi:10.1063/1.1655547. http://scitation.aip.org/content/aip/journal/apl/25/8/10.1063/1.1655547

  30. 30.

    Lenzini, F., Kasture, S., Haylock, B., Lobino, M.: Anisotropic model for the fabrication of annealed and reverse proton exchanged waveguides in congruent lithium niobate. Opt. Express 23(2), 1748–1756 (2014)

    ADS  Article  Google Scholar 

  31. 31.

    Kintaka, K., Fujimura, M., Suhara, T., Nishihara, H.: Efficient ultraviolet light generation by \(\text{ LiNbO }_3\) waveguide first-order quasi-phase-matched second-harmonic generation devices. Electron. Lett. 32(24), 2237–2238 (1996)

    Article  Google Scholar 

  32. 32.

    Tulli, D., Janner, D., Pruneri, V.: Room temperature direct bonding of \(\text{ LiNbO }_3\) crystal layers and its application to high-voltage optical sensing. J. Micromech. Microeng. 21(8), 085025 (2011)

    ADS  Article  Google Scholar 

  33. 33.

    Takigawa, R., Higurashi, E., Suga, T., Kawanishi, T.: Air-gap structure between integrated \(\text{ LiNbO }_3\) optical modulators and micromachined Si substrates. Opt. Express 19(17), 15739–15749 (2011)

    ADS  Article  Google Scholar 

  34. 34.

    Yariv, A.: Quantum Electronics, 3rd edn. Wiley, New York (1987)

    Google Scholar 

  35. 35.

    Luo, L., Hayes, D., Manning, T., Matsukevich, D., Maunz, P., Olmschenk, S., Sterk, J., Monroe, C.: Protocols and techniques for a scalable atom-photon quantum network. Fortschritte der Physik 57(11–12), 1133–1152 (2009)

    ADS  Article  MATH  Google Scholar 

  36. 36.

    Harlander, M., Brownnutt, M., Hänsel, W., Blatt, R.: Trapped-ion probing of light-induced charging effects on dielectrics. New J. Phys. 12(9), 093035 (2010). http://stacks.iop.org/1367-2630/12/i=9/a=093035

  37. 37.

    Fishburn, M., Maruyama, Y., Charbon, E.: Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes. IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011). doi:10.1109/TED.2011.2148117

    ADS  Article  Google Scholar 

  38. 38.

    Tisa, S., Guerrieri, F., Tosi, A., Zappa, F.: 100 kframe/s 8 bit monolithic single-photon imagers. In: 38th European Solid-State Device Research Conference, 2008 (ESSDERC 2008), pp. 274–277. IEEE (2008)

  39. 39.

    Guerrieri, F., Tisa, S., Tosi, A., Zappa, F.: Two-dimensional SPAD imaging camera for photon counting. IEEE Photonics J. 2(5), 759–774 (2010). doi:10.1109/JPHOT.2010.2066554

    Article  Google Scholar 

  40. 40.

    Hume, D.B., Rosenband, T., Wineland, D.J.: High-fidelity adaptive qubit detection through repetitive quantum nondemolition measurements. Phys. Rev. Lett. 99, 120502 (2007)

    ADS  Article  Google Scholar 

  41. 41.

    Wooten, E.L., Kissa, K.M., Yi-Yan, A., Murphy, E.J., Lafaw, D.A., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J., et al.: A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum. Electron. 6(1), 69–82 (2000)

    Article  Google Scholar 

  42. 42.

    Xie, X., Saida, T., Huang, J., Fejer, M.M.: Shape optimization of asymmetric Y-junction for mode multiplexing in proton-exchange lithium niobate waveguides. Proc. SPIE 5728, 360–366 (2005). doi:10.1117/12.593475

    ADS  Article  Google Scholar 

  43. 43.

    Cui, J., Chang, W., Feng, L., Cui, F., Sun, Y.: MMI power splitters based on the annealed proton exchange (APE) technology. Proc. SPIE 6837, 68371A (2007). doi:10.1117/12.757383

    Article  Google Scholar 

  44. 44.

    Shimotsu, S., Oikawa, S., Saitou, T., Mitsugi, N., Kubodera, K., Kawanishi, T., Izutsu, M.: Single side-band modulation performance of a \(\text{ LiNbO }_3\) integrated modulator consisting of four-phase modulator waveguides. IEEE Photonics Tech. Lett. 13(4), 364–366 (2001)

    ADS  Article  Google Scholar 

  45. 45.

    Kawanishi, T., Sakamoto, T., Miyazaki, T., Izutsu, M., Fujita, T., Mori, S., Higuma, K., Ichikawa, J.: High-speed optical DQPSK and FSK modulation using integrated Mach–Zehnder interferometers. Opt. Express 14(10), 4469–4478 (2006)

    ADS  Article  Google Scholar 

  46. 46.

    Balzer, C., Braun, A., Hannemann, T., Paape, C., Ettler, M., Neuhauser, W., Wunderlich, C.: Electrodynamically trapped \(\text{ Yb }^+\) ions for quantum information processing. Phys. Rev. A 73, 041407 (2006)

    ADS  Article  Google Scholar 

  47. 47.

    Olmschenk, S., Younge, K., Moehring, D., Matsukevich, D., Maunz, P., Monroe, C.: Manipulation and detection of a trapped \(\text{ Yb }^+\) hyperfine qubit. Phys. Rev. A 76(5), 052314 (2007)

    ADS  Article  Google Scholar 

  48. 48.

    Kim, J., Pau, S., Ma, Z., McLellan, H., Gates, J., Kornblit, A., Slusher, R.E., Jopson, R.M., Kang, I., Dinu, M.: System design for large-scale ion trap quantum information processor. Quantum Inf. Comput. 5(7), 515–537 (2005)

    MATH  Google Scholar 

  49. 49.

    Balensiefer, S., Kregor-Stickles, L., Oskin, M.: An evaluation framework and instruction set architecture for ion-trap based quantum micro-architectures. In: ACM SIGARCH Computer Architecture News, vol. 33, pp. 186–196. IEEE Computer Society (2005)

  50. 50.

    Kim, K., Chang, M.S., Islam, R., Korenblit, S., Duan, L.M., Monroe, C.: Entanglement and tunable spin–spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103(12), 120502 (2009)

    ADS  Article  Google Scholar 

  51. 51.

    Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    ADS  Article  Google Scholar 

  52. 52.

    Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003)

    ADS  Article  Google Scholar 

  53. 53.

    Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, F.T., Chuang, I.L.: A quantum logic array microarchitecture: Scalable quantum data movement and computation. In: Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture, 2005 (MICRO-38), p. 12. IEEE (2005)

  54. 54.

    Moehring, D.L., Madsen, M.J., Younge, K.C., Kohn, J.R.N., Maunz, P., Duan, L.M., Monroe, C., Blinov, B.B.: Quantum networking with photons and trapped atoms. J. Opt. Soc. Am. B 24, 300–315 (2007)

    ADS  Article  Google Scholar 

  55. 55.

    Hucul, D., Inlek, I., Vittorini, G., Crocker, C., Debnath, S., Clark, S., Monroe, C.: Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2014)

    Article  Google Scholar 

  56. 56.

    Neilson, D.T., Frahm, R., Kolodner, P., Bolle, C., Ryf, R., Kim, J., Papazian, A., Nuzman, C., Gasparyan, A., Basavanhally, N., et al.: \(256\times 256\) port optical cross-connect subsystem. J. Lightwave Tech. 22(6), 1499–1509 (2004)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council (ARC) under DP130101613. D.K. was supported by ARC Future Fellowship FT110100513. E.W.S was supported by ARC Future Fellowship FT130100472.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Kielpinski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kielpinski, D., Volin, C., Streed, E.W. et al. Integrated optics architecture for trapped-ion quantum information processing. Quantum Inf Process 15, 5315–5338 (2016). https://doi.org/10.1007/s11128-015-1162-2

Download citation

Keywords

  • Trapped ions
  • Quantum information processing
  • Diffractive mirrors
  • Integrated optics
  • Optical waveguides