Quantum Information Processing

, Volume 15, Issue 12, pp 5315–5338 | Cite as

Integrated optics architecture for trapped-ion quantum information processing

  • D. KielpinskiEmail author
  • C. Volin
  • E. W. Streed
  • F. Lenzini
  • M. Lobino


Standard schemes for trapped-ion quantum information processing (QIP) involve the manipulation of ions in a large array of interconnected trapping potentials. The basic set of QIP operations, including state initialization, universal quantum logic, and state detection, is routinely executed within a single array site by means of optical operations, including various laser excitations as well as the collection of ion fluorescence. Transport of ions between array sites is also routinely carried out in microfabricated trap arrays. However, it is still not possible to perform optical operations in parallel across all array sites. The lack of this capability is one of the major obstacles to scalable trapped-ion QIP and presently limits exploitation of current microfabricated trap technology. Here we present an architecture for scalable integration of optical operations in trapped-ion QIP. We show theoretically that diffractive mirrors, monolithically fabricated on the trap array, can efficiently couple light between trap array sites and optical waveguide arrays. Integrated optical circuits constructed from these waveguides can be used for sequencing of laser excitation and fluorescence collection. Our scalable architecture supports all standard QIP operations, as well as photon-mediated entanglement channels, while offering substantial performance improvements over current techniques.


Trapped ions Quantum information processing Diffractive mirrors Integrated optics Optical waveguides 



This work was supported by the Australian Research Council (ARC) under DP130101613. D.K. was supported by ARC Future Fellowship FT110100513. E.W.S was supported by ARC Future Fellowship FT130100472.


  1. 1.
    Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Monroe, C., Raussendorf, R., Ruthven, A., Brown, K., Maunz, P., Duan, L.M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89(2), 022317 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Duan, L.M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Steane, A.M.: How to build a 300 bit, 1 giga-operation quantum computer. Quantum Inf. Comput. 7, 171–183 (2007)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kim, J., Kim, C.: Integrated optical approach to trapped ion quantum computation. Quantum Inf. Comput. 9(3), 181–202 (2009)ADSGoogle Scholar
  7. 7.
    Streed, E.W., Norton, B.G., Chapman, J.J., Kielpinski, D.: Scalable, efficient ion–photon coupling with phase Fresnel lenses for large-scale quantum computing. Quantum Inf. Comput. 9, 0203–0214 (2009)Google Scholar
  8. 8.
    VanDevender, A.P., Colombe, Y., Amini, J., Leibfried, D., Wineland, D.J.: Efficient fiber optic detection of trapped ion fluorescence. Phys. Rev. Lett. 105(2), 023001 (2010). doi: 10.1103/PhysRevLett.105.023001 ADSCrossRefGoogle Scholar
  9. 9.
    Streed, E.W., Norton, B.G., Jechow, A., Weinhold, T.J., Kielpinski, D.: Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106(1), 010502 (2011). doi: 10.1103/PhysRevLett.106.010502 ADSCrossRefGoogle Scholar
  10. 10.
    Kim, T.H., Herskind, P.F., Chuang, I.L.: Surface-electrode ion trap with integrated light source. Appl. Phys. Lett. 98(21), 214103 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Brady, G., Ellis, A., Moehring, D., Stick, D., Highstrete, C., Fortier, K., Blain, M., Haltli, R., Cruz-Cabrera, A., Briggs, R., Wendt, J., Carter, T., Samora, S., Kemme, S.: Integration of fluorescence collection optics with a microfabricated surface electrode ion trap. Appl. Phys. B: Lasers Opt. (2011). doi: 10.1007/s00340-011-4453-z
  12. 12.
    Merrill, J.T., Volin, C., Landgren, D., Amini, J.M., Wright, K., Doret, S.C., Pai, C., Hayden, H., Killian, T., Faircloth, D., et al.: Demonstration of integrated microscale optics in surface-electrode ion traps. New J. Phys. 13(10), 103005 (2011)CrossRefGoogle Scholar
  13. 13.
    Eltony, A.M., Wang, S.X., Akselrod, G.M., Herskind, P.F., Chuang, I.L.: Transparent ion trap with integrated photodetector. Appl. Phys. Lett. 102(5), 054106 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Jechow, A., Streed, E.W., Norton, B.G., Petrasiunas, M.J., Kielpinski, D.: Wavelength-scale imaging of trapped ions using a phase Fresnel lens. Opt. Lett. 36, 1371–1373 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Kim, C., Knoernschild, C., Liu, B., Kim, J.: Design and characterization of MEMS micromirrors for ion-trap quantum computation. IEEE J. Sel. Top. Quantum Electron. 13, 322–329 (2007)CrossRefGoogle Scholar
  16. 16.
    Knoernschild, C., Kim, C., Liu, B., Lu, F.P., Kim, J.: MEMS-based optical beam steering system for quantum information processing in two-dimensional atomic systems. Opt. Lett. 33, 273–275 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Crain, S., Mount, E., Baek, S., Kim, J.: Individual addressing of trapped \(^{171}\text{ Yb }+\) ion qubits using a microelectromechanical systems-based beam steering system. Appl. Phys. Lett. 105(18), 181115 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Gil, D., Menon, R., Smith, H.I.: The promise of diffractive optics in maskless lithography. Microelectron. Eng. 73–74, 35 (2004)CrossRefGoogle Scholar
  19. 19.
    Cruz-Cabrera, A., Kemme, S., Wendt, J., Kielpinski, D., Streed, E., Carter, T., Samora, S.: High efficiency DOEs at large diffraction angles for quantum information and computing architectures. In: Integrated Optoelectronic Devices 2007, pp. 648–650. International Society for Optics and Photonics (2007)Google Scholar
  20. 20.
    Shiono, T., Kitagawa, M., Setsune, K., Mitsuyu, T.: Reflection micro-Fresnel lenses and their use in an integrated focus sensor. Appl. Opt. 28(16), 3434–3442 (1989)ADSCrossRefGoogle Scholar
  21. 21.
    Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  22. 22.
    Moharam, M.G., Grann, E.B., Pommet, D.A., Gaylord, T.K.: Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12(5), 1068–1076 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    Ferstl, M., Kuhlow, B., Pawlowski, E.: Effect of fabrication errors on multilevel Fresnel zone lenses. Opt. Eng. 33(4), 1229–1235 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Orihara, Y., Klaus, W., Fujino, M., Kodate, K.: Optimization and application of hybrid-level binary zone plates. Appl. Opt. 40(32), 5877–5885 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    O’Shea, D.C., Suleski, T.J., Kathman, A.D., Prather, D.W.: Diffractive Optics: Design, Fabrication, and Test. SPIE Press, Bellingham (2004)Google Scholar
  26. 26.
    Bonneau, D., Lobino, M., Jiang, P., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Dorenbos, S.N., Zwiller, V., Thompson, M.G., O’Brien, J.L.: Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. Phys. Rev. Lett. 108, 053601 (2012). doi: 10.1103/PhysRevLett.108.053601 ADSCrossRefGoogle Scholar
  27. 27.
    Korkishko, Y.N., Fedorov, V.A.: Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics. Cambridge International Science Publishing, Cambridge (1999)Google Scholar
  28. 28.
    Korkishko, Y.N., Fedorov, V.A., Morozova, T.M., Caccavale, F., Gonella, F., Segato, F.: Reverse proton exchange for buried waveguides in \(\text{ LiNbO }_3\). J. Opt. Soc. Am. A 15(7), 1838 (1998). doi: 10.1364/JOSAA.15.001838.
  29. 29.
    Schmidt, R.V., Kaminow, I.P.: Metal-diffused optical waveguides in \(\text{ LiNbO }_3\). Appl. Phys. Lett. 25(8), 458–460 (1974). doi: 10.1063/1.1655547.
  30. 30.
    Lenzini, F., Kasture, S., Haylock, B., Lobino, M.: Anisotropic model for the fabrication of annealed and reverse proton exchanged waveguides in congruent lithium niobate. Opt. Express 23(2), 1748–1756 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Kintaka, K., Fujimura, M., Suhara, T., Nishihara, H.: Efficient ultraviolet light generation by \(\text{ LiNbO }_3\) waveguide first-order quasi-phase-matched second-harmonic generation devices. Electron. Lett. 32(24), 2237–2238 (1996)CrossRefGoogle Scholar
  32. 32.
    Tulli, D., Janner, D., Pruneri, V.: Room temperature direct bonding of \(\text{ LiNbO }_3\) crystal layers and its application to high-voltage optical sensing. J. Micromech. Microeng. 21(8), 085025 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Takigawa, R., Higurashi, E., Suga, T., Kawanishi, T.: Air-gap structure between integrated \(\text{ LiNbO }_3\) optical modulators and micromachined Si substrates. Opt. Express 19(17), 15739–15749 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Yariv, A.: Quantum Electronics, 3rd edn. Wiley, New York (1987)Google Scholar
  35. 35.
    Luo, L., Hayes, D., Manning, T., Matsukevich, D., Maunz, P., Olmschenk, S., Sterk, J., Monroe, C.: Protocols and techniques for a scalable atom-photon quantum network. Fortschritte der Physik 57(11–12), 1133–1152 (2009)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Harlander, M., Brownnutt, M., Hänsel, W., Blatt, R.: Trapped-ion probing of light-induced charging effects on dielectrics. New J. Phys. 12(9), 093035 (2010).
  37. 37.
    Fishburn, M., Maruyama, Y., Charbon, E.: Reduction of fixed-position noise in position-sensitive single-photon avalanche diodes. IEEE Trans. Electron. Dev. 58(8), 2354–2361 (2011). doi: 10.1109/TED.2011.2148117 ADSCrossRefGoogle Scholar
  38. 38.
    Tisa, S., Guerrieri, F., Tosi, A., Zappa, F.: 100 kframe/s 8 bit monolithic single-photon imagers. In: 38th European Solid-State Device Research Conference, 2008 (ESSDERC 2008), pp. 274–277. IEEE (2008)Google Scholar
  39. 39.
    Guerrieri, F., Tisa, S., Tosi, A., Zappa, F.: Two-dimensional SPAD imaging camera for photon counting. IEEE Photonics J. 2(5), 759–774 (2010). doi: 10.1109/JPHOT.2010.2066554 CrossRefGoogle Scholar
  40. 40.
    Hume, D.B., Rosenband, T., Wineland, D.J.: High-fidelity adaptive qubit detection through repetitive quantum nondemolition measurements. Phys. Rev. Lett. 99, 120502 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Wooten, E.L., Kissa, K.M., Yi-Yan, A., Murphy, E.J., Lafaw, D.A., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J., et al.: A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum. Electron. 6(1), 69–82 (2000)CrossRefGoogle Scholar
  42. 42.
    Xie, X., Saida, T., Huang, J., Fejer, M.M.: Shape optimization of asymmetric Y-junction for mode multiplexing in proton-exchange lithium niobate waveguides. Proc. SPIE 5728, 360–366 (2005). doi: 10.1117/12.593475 ADSCrossRefGoogle Scholar
  43. 43.
    Cui, J., Chang, W., Feng, L., Cui, F., Sun, Y.: MMI power splitters based on the annealed proton exchange (APE) technology. Proc. SPIE 6837, 68371A (2007). doi: 10.1117/12.757383 CrossRefGoogle Scholar
  44. 44.
    Shimotsu, S., Oikawa, S., Saitou, T., Mitsugi, N., Kubodera, K., Kawanishi, T., Izutsu, M.: Single side-band modulation performance of a \(\text{ LiNbO }_3\) integrated modulator consisting of four-phase modulator waveguides. IEEE Photonics Tech. Lett. 13(4), 364–366 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    Kawanishi, T., Sakamoto, T., Miyazaki, T., Izutsu, M., Fujita, T., Mori, S., Higuma, K., Ichikawa, J.: High-speed optical DQPSK and FSK modulation using integrated Mach–Zehnder interferometers. Opt. Express 14(10), 4469–4478 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Balzer, C., Braun, A., Hannemann, T., Paape, C., Ettler, M., Neuhauser, W., Wunderlich, C.: Electrodynamically trapped \(\text{ Yb }^+\) ions for quantum information processing. Phys. Rev. A 73, 041407 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Olmschenk, S., Younge, K., Moehring, D., Matsukevich, D., Maunz, P., Monroe, C.: Manipulation and detection of a trapped \(\text{ Yb }^+\) hyperfine qubit. Phys. Rev. A 76(5), 052314 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Kim, J., Pau, S., Ma, Z., McLellan, H., Gates, J., Kornblit, A., Slusher, R.E., Jopson, R.M., Kang, I., Dinu, M.: System design for large-scale ion trap quantum information processor. Quantum Inf. Comput. 5(7), 515–537 (2005)zbMATHGoogle Scholar
  49. 49.
    Balensiefer, S., Kregor-Stickles, L., Oskin, M.: An evaluation framework and instruction set architecture for ion-trap based quantum micro-architectures. In: ACM SIGARCH Computer Architecture News, vol. 33, pp. 186–196. IEEE Computer Society (2005)Google Scholar
  50. 50.
    Kim, K., Chang, M.S., Islam, R., Korenblit, S., Duan, L.M., Monroe, C.: Entanglement and tunable spin–spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103(12), 120502 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, F.T., Chuang, I.L.: A quantum logic array microarchitecture: Scalable quantum data movement and computation. In: Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture, 2005 (MICRO-38), p. 12. IEEE (2005)Google Scholar
  54. 54.
    Moehring, D.L., Madsen, M.J., Younge, K.C., Kohn, J.R.N., Maunz, P., Duan, L.M., Monroe, C., Blinov, B.B.: Quantum networking with photons and trapped atoms. J. Opt. Soc. Am. B 24, 300–315 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    Hucul, D., Inlek, I., Vittorini, G., Crocker, C., Debnath, S., Clark, S., Monroe, C.: Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2014)CrossRefGoogle Scholar
  56. 56.
    Neilson, D.T., Frahm, R., Kolodner, P., Bolle, C., Ryf, R., Kim, J., Papazian, A., Nuzman, C., Gasparyan, A., Basavanhally, N., et al.: \(256\times 256\) port optical cross-connect subsystem. J. Lightwave Tech. 22(6), 1499–1509 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • D. Kielpinski
    • 1
    Email author
  • C. Volin
    • 2
  • E. W. Streed
    • 1
    • 3
  • F. Lenzini
    • 1
    • 4
  • M. Lobino
    • 1
    • 4
  1. 1.Centre for Quantum DynamicsGriffith UniversityBrisbaneAustralia
  2. 2.Georgia Tech Research InstituteAtlantaUSA
  3. 3.Institute for GlycomicsGriffith UniversitySouthportAustralia
  4. 4.Queensland Micro- and Nanotechnology CentreGriffith UniversityBrisbaneAustralia

Personalised recommendations