Skip to main content
Log in

Fast clique minor generation in Chimera qubit connectivity graphs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The current generation of D-Wave quantum annealing processor is designed to minimize the energy of an Ising spin configuration whose pairwise interactions lie on the edges of a Chimera graph \({\mathcal {C}}_{M,N,L}\). In order to solve an Ising spin problem with arbitrary pairwise interaction structure, the corresponding graph must be minor-embedded into a Chimera graph. We define a combinatorial class of native clique minors in Chimera graphs with vertex images of uniform, near minimal size and provide a polynomial-time algorithm that finds a maximum native clique minor in a given induced subgraph of a Chimera graph. These minors allow improvement over recent work and have immediate practical applications in the field of quantum annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Taking the triangle embedding and making an image of all the unused qubits gives a \(K_{LM +1}\) minor.

References

  1. Albash, T., Vinci, W., Mishra, A., Warburton, P.A., Lidar, D.A.: Consistency tests of classical and quantum models for a quantum annealer. Phys. Rev. A 91(4), 042,314 (2015)

    Article  Google Scholar 

  2. Berkley, A.J., Johnson, M.W., Bunyk, P., Harris, R., Johansson, J., Lanting, T., Ladizinsky, E., Tolkacheva, E., Amin, M.H.S., Rose, G.: A scalable readout system for a superconducting adiabatic quantum optimization system. Supercond. Sci. Technol. 23(10), 105,014 (2010)

    Article  Google Scholar 

  3. Boixo, S., Smelyanskiy, V.N., Shabani, A., Isakov, S.V., Dykman, M., Denchev, V.S., Amin, M., Smirnov, A., Mohseni, M., Neven, H.: Computational role of collective tunneling in a quantum annealer. arXiv preprint arXiv:1411.4036 (2014)

  4. Cai, J., Macready, W., Roy, A.: A practical heuristic for finding graph minors. arXiv preprint arXiv:1406.2741 (2014)

  5. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Das, A., Chakrabarti, B.K.: Colloquium: quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061–1081 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Dickson, N., et al.: Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4(May), 1903 (2013). doi:10.1038/ncomms2920. URL http://www.ncbi.nlm.nih.gov/pubmed/23695697

  9. Dziarmaga, J.: Dynamics of a quantum phase transition: exact solution of the quantum ising model. Phys. Rev. Lett. 95(24), 245,701 (2005)

    Article  Google Scholar 

  10. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2000). URL arXiv:quant-ph/0001106

  11. Finilla, A.B., Gomez, M.A., Sebenik, C., Doll, D.J.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343–348 (1994)

    Article  ADS  Google Scholar 

  12. Harris, R., Johansson, J., Berkley, A.J., Johnson, M.W., Lanting, T., Han, S., Bunyk, P., Ladizinsky, E., Oh, T., Perminov, I., Tolkacheva, E., Uchaikin, S., Chapple, E.M., Enderud, C., Rich, C., Thom, M., Wang, J., Wilson, B., Rose, G.: Experimental demonstration of a robust and scalable flux qubit. Phys. Rev. B 81, 134,510 (2010)

    Article  Google Scholar 

  13. Johnson, M., Amin, M., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A., Johansson, J., Bunyk, P., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

    Article  ADS  Google Scholar 

  14. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)

    Article  ADS  Google Scholar 

  15. Katzgraber, H., Hamze, F., Andrist, R.: Glassy Chimeras could be blind to quantum speedup: designing better benchmarks for quantum annealing machines. Phys. Rev. X 4(2), 021,008 (2014)

    Google Scholar 

  16. King, A.D., McGeoch, C.C.: Algorithm engineering for a quantum annealing platform. arXiv preprint arXiv:1410.2628 (2014)

  17. Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: minor embedding with hard faults. Quantum Inf. Process. 13(3), 709–729 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Perdomo-Ortiz, A., Fluegemann, J., Biswas, R., Smelyanskiy, V.N.: A performance estimator for quantum annealers: gauge selection and parameter setting. arXiv preprint arXiv:1503.01083 (2015)

  19. Santoro, G.E., Tosatti, E.: Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A Math. Gen. 39(36), R393 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Vatter, V., Waton, S.: On points drawn from a circle. Electronic J. Comb. 18(1), P223 (2011)

    MathSciNet  Google Scholar 

  21. Venturelli, D., Mandrà, S., Knysh, S., O’Gorman, B., Biswas, R., Smelyanskiy, V.: Quantum optimization of fully-connected spin glasses. arXiv preprint arXiv:1406.7553 (2014)

  22. Young, K., Blume-Kohout, R., Lidar, D.: Adiabatic quantum optimization with the wrong Hamiltonian. Phys. Rev. A 88(6), 062,314 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. King.

Additional information

This research was partially supported by the Mitacs Accelerate program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boothby, T., King, A.D. & Roy, A. Fast clique minor generation in Chimera qubit connectivity graphs. Quantum Inf Process 15, 495–508 (2016). https://doi.org/10.1007/s11128-015-1150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1150-6

Keywords

Navigation