Skip to main content
Log in

Entanglement of arbitrary spin modes in expanding universe

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Pair particle creation is a well-known effect in the domain of field theory in curved space–time. The behavior of the generated entanglement due to expanding universe is very different for spin-0 and spin-1/2 particles. We study spin-1 particles in Friedmann–Robertson–Walker (FRW) space–time using Duffin–Kemmer–Petiau equation and spin-3/2 particles in FRW space–time using Rarita–Schwinger equation. We find that in expanding universe, the behavior of the generated entanglement for spin-1 particles is the same as the behavior of the generated entanglement for spin-0 particles. Also, we find that spin-3/2 and spin-1/2 particles have the same behavior for the generated entanglement in expanding universe. We conclude that the absolute values of spins do not play any role and the differences in the behavior of the generated entanglement in expanding universe are due to bosonic or fermionic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For a density matrix \(\rho \) of a composite bipartite system AB, a separable state can be written as \( \rho _\mathrm{sep}=\sum _iw_i \rho _A^i\otimes \rho _B^i, \) where \(w_i\)’s are positive weights, and \(\rho _A^i\)’s and \(\rho _B^i\)’s are local states belonging to A and B, respectively. An entangled state is a state that is not separable.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Shi, Y.: Entanglement in relativistic quantum field theory. Phys. Rev. D 70, 105001-1-5 (2004)

    Article  ADS  Google Scholar 

  4. Alsing, P.M., Milburn, G.J.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 91, 180404-1-4 (2003)

    Article  ADS  Google Scholar 

  5. León, J., Martín-Martínez, E.: Spin and occupation number entanglement of Dirac fields for noninertial observers. Phys. Rev. A 80, 012314-1-13 (2009)

    Article  ADS  Google Scholar 

  6. Mann, R.B., Villalba, V.M.: Speeding up entanglement degradation. Phys. Rev. A 80, 022305-1-5 (2009)

    Article  ADS  Google Scholar 

  7. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. phys. 79, 555–609 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Martín-Martínez, E., León, J.: Quantum correlations through event horizons: fermionic versus bosonic entanglement. Phys. Rev. A 81, 032320-1-13 (2010)

    ADS  Google Scholar 

  9. Wang, J., Deng, J., Jing, J.: Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A 81, 052120-1-5 (2010)

    ADS  Google Scholar 

  10. Mehri-Dehnavi, H., Mirza, B., Mohammadzadeh, H., Rahimi, R.: Pseudo-entanglement evaluated in noninertial frames. Ann. Phys. 326, 1320–1333 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Ebadi, Z., Mirza, B.: Entanglement generation by electric field background. Ann. Phys. 351, 363–381 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  12. Alsing, P.M., McMahon, D., Milburn, G.J.: Teleportation in a non-inertial frame. J. Opt. B 6, S834–S843 (2004)

    Article  ADS  Google Scholar 

  13. Mehri-Dehnavi, H., Rahimi, R., Mohammadzadeh, H., Ebadi, Z., Mirza, B.: Quantum teleportation with nonclassical correlated states in noninertial frames. Quantum Inf. Process. 14, 1025–1034 (2015)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Ebadi, Z., Mirza, B.: Entanglement generation due to the background electric field and curvature of spacetime. Int. J. Mod. Phys. A 30, 1550031-1-16 (2015)

    Article  ADS  Google Scholar 

  15. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404-1-4 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  16. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326-1-15 (2006)

    Article  ADS  Google Scholar 

  17. Ahmadi, M., Bruschi, D.E., Fuentes, I.: Quantum metrology for relativistic quantum fields. Phys. Rev. D 89, 065028-1-10 (2014)

    Article  ADS  Google Scholar 

  18. Lee, A.R., Fuentes, I.: Spatially extended Unruh–DeWitt detectors for relativistic quantum information. Phys. Rev. D 89, 085041-1-9 (2014)

    ADS  Google Scholar 

  19. Bruschi, D.E., Sabín, C., White, A., Baccetti, V., Oi, D.K.L., Fuentes, I.: Testing the effects of gravity and motion on quantum entanglement in space-based experiments. New J. Phys. 16, 053041-1-15 (2014)

    ADS  Google Scholar 

  20. Aspelmeyer, M., Böhm, H.R., Gyatso, T., Jennewein, T., Kaltenbaek, R., Lindenthal, M., Molina-Terriza, G., Poppe, A., Resch, K., Taraba, M., Ursin, R., Walther, P., Zeilinger, A.: Long-distance free-space distribution of quantum entanglement. Science 301, 621–623 (2003)

    Article  ADS  Google Scholar 

  21. Peng, C.-Z., Yang, T., Bao, X.-H., Zhang, J., Jin, X.-M., Feng, F.-Y., Yang, B., Yang, J., Yin, J., Zhang, Q., Li, N., Tian, B.-L., Pan, J.-W.: Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501-1-4 (2005)

    Article  ADS  Google Scholar 

  22. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over. Nature Phys. 3, 481–486 (2007)

    Article  ADS  Google Scholar 

  23. Ursin, R., Jennewein, T., Kofler, J., Perdigues, J.M., Cacciapuoti, L., de Matos, C.J., Aspelmeyer, M., Valencia, A., Scheidl, T., Fedrizzi, A., Acin, A., Barbieri, C., Bianco, G., Brukner, C., Capmany, J., Cova, S., Giggenbach, D., Leeb, W., Hadfield, R.H., Laflamme, R., Lutkenhaus, N., Milburn, G., Peev, M., Ralph, T., Rarity, J., Renner, R., Samain, E., Solomos, N., Tittel, W., Torres, J.P., Toyoshima, M., Ortigosa-Blanch, A., Pruneri, V., Villoresi, P., Walmsley, I., Weihs, G., Weinfurter, H., Zukowski, M., Zeilinger, A.: Space-quest, experiments with quantum entanglement in space. Europhys. News 40, 26–29 (2009)

    Article  ADS  Google Scholar 

  24. Schiller, S., Görlitz, A., Nevsky, A., Alighanbari, S., Vasilyev, S., Abou-Jaoudeh, C., Mura, G., Franzen, T., Sterr, U., Falke, S., Lisdat, C., Rasel, E., Kulosa, A., Bize, S., Lodewyck, J., Tino, G.M., Poli, N., Schioppo, M., Bongs, K., Singh, Y., Gill, P., Barwood, G., Ovchinnikov, Y., Stuhler, J., Kaenders, W., Braxmaier, C., Holzwarth, R., Donati, A., Lecomte, S., Calonico, D., Levi, F.: The space optical clocks project: development of high-performance transportable and breadboard optical clocks and advanced subsystems. arXiv:1206.3765

  25. Poli, N., Oates, C.W., Gill, P., Tino, G.M.: Optical atomic clocks. La rivista del Nuovo Cimento 36, 555–624 (2013)

    ADS  Google Scholar 

  26. Ahmadi, M., Bruschi, D.E., Sabín, C., Adesso, G., Fuentes, I.: Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies. Sci. Rep. 4, 4996-1-6 (2014)

    Article  ADS  Google Scholar 

  27. Ball, J.L., Fuentes-Schuller, I., Schuller, F.P.: Entanglement in an expanding spacetime. Phys. Lett. A 359, 550–554 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Fuentes, I., Mann, R.B., Martín-Martínez, E., Moradi, S.: Entanglement of Dirac fields in an expanding spacetime. Phys. Rev. D. 82, 045030-1-9 (2010)

    Article  ADS  Google Scholar 

  29. Barcelo, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Relativ. 14, 3-1-159 (2011)

    Article  ADS  Google Scholar 

  30. Schützhold, R., Unruh, W.G.: Cosmological particle creation in the lab? Lecture notes in physics, vol. 870. Springer, New York (2013)

    Google Scholar 

  31. Schwarz, I.P.: Experimenting with quantum fields in curved spacetime in the lab. arXiv:1112.2311

  32. Szpak, N.: curved spacetimes in the lab. arXiv:1410.1567

  33. Kemmer, N.: The particle aspect of meson theory. Proc. Roy. Soc. A 177, 91–116 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  34. Weinberg, S.: Feynman rules for any spin. Phys. Rev. 133, B1318–B1332 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  35. Shay, S., Good Jr, R.H.: Spin-one particle in an external electromagnetic field. Phys. Rev. 179, 1410–1417 (1969)

    Article  ADS  Google Scholar 

  36. Zamani, F., Mostafazadeh, A.: Quantum mechanics of Proca fields. J. Math. Phys. 50, 052302 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  37. Mirza, B., Narimani, R., Zare, M.: Aharonov–Casher effect for spin-1 particles in a non-commutative space. Eur. Phys. J. C. 48, 641–645 (2006)

    Article  ADS  MATH  Google Scholar 

  38. Swansson, J.A., McKellar, B.H.J.: Relativistic Aharonov–Casher phase in spin 1. J. Phys. A: Math Gen. 34, 1051–1061 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Falek, M., Merad, M.: DKP oscillator in a noncommutative space. Commun. Theor. Phys. 50, 587–592 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  40. Greiner, W.: Relativistic quantum mechanics. Springer, Berlin, Heidelberg (1990)

    Book  MATH  Google Scholar 

  41. Falek, M., Merad, M.: Duffin–Kemmer–Petiau equation in curved space–time. AIP Conf. Proc. 1444, 367–369 (2012)

    Article  ADS  Google Scholar 

  42. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover, New York (1965)

    Google Scholar 

  43. Birrell, N.D., Davies, P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  44. Rarita, W., Schwinger, J.: On a theory of particles with half-integral spin. Phys. Rev. 60, 61 (1941)

    Article  ADS  MATH  Google Scholar 

  45. Velo, G., Zwanziger, D.: Propagation and quantization of Rarita–Schwinger waves in an external electromagnetic potential. Phys. Rev. 186, 1337–1341 (1969)

    Article  ADS  Google Scholar 

  46. Maroto, A.L., Mazumdar, A.: Production of spin 3/2 particles from vacuum fluctuations. Phys. Rev. Lett. 84, 1655–1658 (2000)

    Article  ADS  Google Scholar 

  47. Duncan, A.: Explicit dimensional renormalization of quantum field theory in curved space–time. Phys. Rev. D 17, 964–971 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  48. Taronna, M.: Higher-spin interactions: four-point functions and beyond. J. High Energy Phys. 2012(4), 029-1–75 (2012)

  49. Fedoruk, S., Lukierski, J.: New spinorial particle model in tensorial space–time and interacting higher spin fields. J. High Energy Phys. 2013(2), 128-1–20 (2013)

  50. Florakis, I., Sorokin, D., Tsulaia, M.: Higher spins in hyperspace. J. High Energy Phys. 2014(7), 105-1–24 (2014)

  51. Vasiliev, M.A.: More on equations of motion for interacting massless fields of all spins in 3+ 1 dimensions. Phys. Lett. B 285, 225–234 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  52. Sorokin, D.: Introduction to the classical theory of higher spins. AIP Conf. Proc. 767, 172–202 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  53. Capozziello, S., Luongo, O.: Entangled states in quantum cosmology and the interpretation of \({\Lambda }\). Entropy 13(2), 528–541 (2011)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

R.R. would like to acknowledge supports from Industry of Canada, CIFAR and NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robabeh Rahimi Darabad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, H., Ebadi, Z., Mehri-Dehnavi, H. et al. Entanglement of arbitrary spin modes in expanding universe. Quantum Inf Process 14, 4787–4801 (2015). https://doi.org/10.1007/s11128-015-1125-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1125-7

Keywords

Navigation