Abstract
We propose an implementation of a quantum walk on a circle in an optomechanical system by encoding the walker on the phase space of a radiation field and the coin on a two-level state of a mechanical resonator. The dynamics of the system is obtained by applying Suzuki–Trotter decomposition. We numerically show that the system displays typical behaviors of quantum walks, namely the probability distribution evolves ballistically and the standard deviation of the phase distribution is linearly proportional to the number of steps. We also analyze the effects of decoherence by using the phase-damping channel on the coin space, showing the possibility to implement the quantum walk with present-day technology.
This is a preview of subscription content, access via your institution.






Notes
Usually in Hamiltonian (1) a linearization procedure is performed by assuming an undepleted cavity field, where the field operator is given by \(a\approx \alpha +\Delta a\), being \(\alpha \) a coherent amplitude and \(\Delta a\) a quantum fluctuation. Had we considered this linearization we would have ended up with the interaction term \(-\hbar g_0 (\alpha \Delta a^{\dagger }+\alpha ^* \Delta a) (b^{\dagger } + b)\), which turns out to lead to a quantum walk on a line given the displacement operator for the field \((\Delta a^{\dagger }+ \Delta a)\) for \(\alpha \) real. In this paper, we do not consider this procedure.
References
Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)
Vieira, R., Amorim, E.P.M., Rigolin, G.: Dynamically disordered quantum walk as a maximal entanglement generator. Phys. Rev. Lett. 111(18), 180503 (2013)
Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the thirty-fifth ACM symposium on Theory of computing—STOC ’03, p. 59 (2003)
Childs, A., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70(2), 1–11 (2004)
Portugal, R.: Quantum walks and search algorithms. Springer, Berlin (2013)
Manouchehri, K., Wang, J.: Physical implementation of quantum walks. Springer, Berlin, Heidelberg (2014)
Bouwmeester, D., Marzoli, I., Karman, G., Schleich, W., Woerdman, J.: Optical galton board. Phys. Rev. A 61(1), 013410 (1999)
Souto Ribeiro, P., Walborn, S., Raitz, C., Davidovich, L., Zagury, N.: Quantum random walks and wave-packet reshaping at thesingle-photon level. Phys. Rev. A 78(1), 012326 (2008)
Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104(15), 153602 (2010)
Zhang, P., Liu, B.H., Liu, R.F., Li, H.R., Li, F.L., Guo, G.C.: Implementation of one-dimensional quantum walks on spin-orbital angular momentum space of photons. Phys. Rev. A 81(5), 052322 (2010)
Peruzzo, A., Lobino, M., Matthews, J.C.F., Matsuda, N., Politi, A., Poulios, K., Zhou, X.Q., Lahini, Y., Ismail, N., Wörhoff, K., Bromberg, Y., Silberberg, Y., Thompson, M.G., OBrien, J.L.: Quantum walks of correlated photons. Science 329(5998), 1500–1503 (2010). (New York, NY)
Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010)
Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Jex, I., Silberhorn, C.: Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106(18), 180403 (2011)
Goyal, S.K., Roux, F.S., Forbes, A., Konrad, T.: Implementing quantum walks using orbital angular momentum of classical light. Phys. Rev. Lett. 110(26), 263602 (2013)
Xue, P., Sanders, B., Leibfried, D.: Quantum walk on a line for a trapped ion. Phys. Rev. Lett. 103(18), 183602 (2009)
Karski, M., Förster, L., Choi, J.M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009). (New York, NY)
Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104(10), 100503 (2010)
Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103(9), 090504 (2009)
Dür, W., Raussendorf, R., Kendon, V., Briegel, H.J.: Quantum walks in optical lattices. Phys. Rev. A 66(5), 052319 (2002)
Travaglione, B., Milburn, G.: Implementing the quantum random walk. Phys. Rev. A 65(3), 032310 (2002)
Sanders, B.C., Bartlett, S.D., Tregenna, B., Knight, P.L.: Quantum quincunx in cavity quantum electrodynamics. Phys. Rev. A 67(4), 042305 (2003)
Xue, P., Sanders, B.C.: Quantum quincunx for walk on circles in phase space with indirect coin flip. New J. Phys. 10(5), 053025 (2008)
Xue, P., Sanders, B., Blais, A., Lalumière, K.: Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics. Phys. Rev. A 78(4), 042334 (2008)
Hardal, A.Ü., Xue, P., Shikano, Y., Müstecaplıoğlu, Ö.E., Sanders, B.C.: Discrete-time quantum walk with nitrogen-vacancy centers in diamond coupled to a superconducting flux qubit. Phys. Rev. A 88(2), 022303 (2013)
Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. arXiv:1303.0733 (2013)
Poot, M., van der Zant, H.S.: Mechanical systems in the quantum regime. Phys. Rep. 511(5), 273–335 (2012)
O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., et al.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464(7289), 697–703 (2010)
Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478(7367), 89–92 (2011)
Teufel, J.D., Donner, T., Castellanos-Beltran, M.A., Harlow, J.W., Lehnert, K.W.: Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4(12), 820–823 (2009)
Suzuki, M.: Decomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physics. J. Math. Phys. 26, 601 (1985)
Suzuki, M.: Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Commun. Math. Phys. 51(2), 183–190 (1976)
Loudon, R.: The quantum theory of light. Oxford University Press, Oxford (2000)
Kempe, J.: Quantum random walks—an introductory overview. Contemp. Phys. 44(4), 302–327 (2003). (Quant-ph/0303081)
de Oliveira, M.C., Moussa, M.H.Y., Mizrahi, S.S.: Continuous pumping and control of a mesoscopic superposition state in a lossy QED cavity. Phys. Rev. A 61, 063809 (2000)
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New York (2010)
Verhagen, E., Deleglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482(7383), 63–67 (2012)
Chandrashekar, C.M., Srikanth, R., Subhashish, Banerjee: Symmetries and noise in quantum walk. Phys Rev. A 76, 022316 (2007)
Okamoto, H., Gourgout, A., Chang, C.Y., Onomitsu, K., Mahboob, I., Chang, E.Y., Yamaguchi, H.: Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys. 9(8), 480–484 (2013)
Faust, T., Rieger, J., Seitner, M., Kotthaus, J., Weig, E.: Coherent control of a classical nanomechanical two-level system. Nat. Phys. 9(8), 485–488 (2013)
Acknowledgments
JKM acknowledges financial supports from CNPq, Grants PCI-DB 302866/2014-0 and PDJ 165941/2014-6. RP acknowledges financial support from CNPq and FAPERJ. MCO acknowledges support by FAPESP and CNPq through the National Institute for Science and Technology of Quantum Information (INCT-IQ) and the Research Center in Optics and Photonics (CePOF).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Moqadam, J.K., Portugal, R. & de Oliveira, M.C. Quantum walks on a circle with optomechanical systems. Quantum Inf Process 14, 3595–3611 (2015). https://doi.org/10.1007/s11128-015-1079-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1079-9
Keywords
- Optomechanical and electromechanical resonators
- Quantum walk
- Simulation