Skip to main content
Log in

Quantum fully homomorphic encryption scheme based on universal quantum circuit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Fully homomorphic encryption enables arbitrary computation on encrypted data without decrypting the data. Here it is studied in the context of quantum information processing. Based on universal quantum circuit, we present a quantum fully homomorphic encryption (QFHE) scheme, which permits arbitrary quantum transformation on any encrypted data. The QFHE scheme is proved to be perfectly secure. In the scheme, the decryption key is different from the encryption key; however, the encryption key cannot be revealed. Moreover, the evaluation algorithm of the scheme is independent of the encryption key, so it is suitable for delegated quantum computing between two parties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)

  2. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. FOCS 2011, 97–106 (2011)

    MathSciNet  Google Scholar 

  3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325, Cambridge, USA, January 8–10. ACM Press, New York (2012)

  4. Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Comput. 5, 456 (2005)

    MathSciNet  Google Scholar 

  5. Arrighi, P., Salvail, L.: Blind quantum computation. Int. J. Quantum Inform. 4, 883 (2006)

    Article  Google Scholar 

  6. Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations. In: Proceeding of Innovation in Computer Science, p. 453. Tsinghua University Press, Beijing (2010)

  7. Broadbent, A.J., Fitzsimons, F., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE symposium on Foundations of Computer Science, p. 517. IEEE Computer Society, Los Alamitos (2009)

  8. Sueki, T., Koshiba, T., Morimae, T.: Ancilla-driven universal blind quantum computation. Phys. Rev. A 87, 060301 (2013)

    Article  ADS  Google Scholar 

  9. Vedral, V.: Moving beyond trust in quantum computing. Science 335(6066), 294 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  10. Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)

    Article  ADS  Google Scholar 

  11. Morimae, T.: Continuous-variable blind quantum computation. Phys. Rev. Lett. 109, 230502 (2012)

    Article  ADS  Google Scholar 

  12. Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind computation. arXiv:1203.5217

  13. Giovannetti, V., Lloyd, S., Maccone, L.: Efficient universal blind quantum computing. Phys. Rev. Lett. 111(23), 230501 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  14. Mantri, A., Perez-Delgado, C.A., Fitzsimons, J.F.: Optimal blind quantum computation. Phys. Rev. Lett. 111(23), 230502 (2013)

    Article  ADS  Google Scholar 

  15. Li, Q., Chan, W.H., Wu, C.H., Wen, Z.H.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89, 040302(R) (2014)

    Article  ADS  Google Scholar 

  16. Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science 335, 303 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  17. Barz, S., Fitzsimons, J.F., Kashefi, E., Walther, P.: Experimental verification of quantum computation. Nat. Phys. 9, 727 (2013)

    Article  Google Scholar 

  18. Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with encrypted data. Phys. Rev. Lett. 109(15), 150501 (2012)

    Article  ADS  Google Scholar 

  19. Liang, M.: Symmetric quantum fully homomorphic encryption with perfect security. Quantum Inf. Process. 12, 3675–3687 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  20. Yu, L., Pérez-Delgado, C.A., Fitzsimons, J.F.: Limitations on information theoretically secure quantum homomorphic encryption. Phys. Rev. A 90, 050303 (2014)

    Article  ADS  Google Scholar 

  21. Tan, S.H., Kettlewell, J.A., Ouyang, Y.K., Chen, L., Fitzsimons, J.F.: A quantum approach to fully homomorphic encryption. arXiv:1411.5254v2

  22. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low T-gate complexity. arXiv:1412.8766

  23. Liang, M.: Tripartite blind quantum computation. arXiv:1311.6304

  24. Bera, D., Fenner, S., Green, F., Homer, S.: Efficient universal quantum circuits. Quantum Inf. Comput. 10(1), 16C27 (2010)

    MathSciNet  Google Scholar 

  25. Liang, M., Yang, L.: Universal quantum circuit of near-trivial transformations. Sci. China-Phys. Mech. Astron. 54(10), 1819–1827 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  26. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 042317 (2003)

    Article  ADS  Google Scholar 

  27. Boykin, P.O.: Information security and quantum mechanics: security of quantum protocols. Ph.D. thesis, University of California, Los Angeles (2002)

  28. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  29. Dupuis, F., Nielsen, J.B., Salvail, L.: Secure two-party quantum evaluation of unitaries against specious adversaries. Advances in Cryptology. In: Proceedings of Crypto 2010, pp. 685–706. Springer, Berlin (2010)

  30. Fisher, K., Broadbent, A., Shalm, L.K., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.J.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 61173157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M. Quantum fully homomorphic encryption scheme based on universal quantum circuit. Quantum Inf Process 14, 2749–2759 (2015). https://doi.org/10.1007/s11128-015-1034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1034-9

Keywords

Navigation