Skip to main content
Log in

Curvature detection by entanglement generation using a beam splitter

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the behavior of radiation field, whose state is described by the so-called sphere coherent state, through a beam splitter. These states are realization of coherent states of two-dimensional harmonic oscillator, which lives on a sphere, as radiation field. By using the linear entropy as a measure of entanglement, we show that the entanglement depends on the curvature of the sphere. So, by using the appropriating sphere coherent states, we can control the entanglement of the output states of the beam splitter in the laboratory. In addition, as the convince measures of non-classical behaviors, we consider Mandel parameters of the output states of the beam splitter and their quadrature squeezing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Kim, M.S., Son, W., Buzek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002)

    Article  ADS  Google Scholar 

  3. Berrada, K., Abdel-Khalek, S., Eleuch, H., Hassouni, Y.: Beam splitting and entanglement generation: excited coherent states. Quantum Inf. Process. 12, 69 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett, C.H., Shor, P.W., Smolin, J.A.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83, 3081 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  5. Berrada, K., Baz, MEl, Saif, F., Hassouni, Y., Mnia, S.: Entanglement generation from deformed spin coherent states using a beam splitter. J. Phys. A 42, 285306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kim, M.S., Agarwal, G.S.: Reconstruction of an entangled state in cavity QED. Phys. Rev. A 59, 3044 (1999)

    Article  ADS  MATH  Google Scholar 

  7. Xiao, Xiao-Qi, Zhu, J., He, G., Zeng, G.: A scheme for generating a multi-photon NOON state based on cavity QED. Quantum Inf. Process. 12, 449 (2013)

    Article  ADS  MATH  Google Scholar 

  8. Eskandari, M.R., Rezaee, L.: Thermal entanglement of two qubits with dipolar ordered initial state coupled to a spin chain in MQ NMR system. Int. J. Mod. Phys. B 26, 1250184 (2012)

  9. Soares-Pinto, D.O., Auccaise, R., Maziero, J., Gavini-Viana, A., Serra, R.M., Celeri, L.C.: On the quantumness of correlations in nuclear magnetic resonance. Philos. Trans. R. Soc. A 370, 4821 (2012)

  10. Eleuch, H.: Entanglement and autocorrelation function in semiconductor microcavity. Int. J. Mod. Phys. B 24, 5653 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Leonhardt, U.: Essential Quantum Optics. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  12. Azuma, K., Kato, G.: Optimal entanglement manipulation via coherent-state transmission. Phys. Rev. A 85, 060303 (2012)

    Article  ADS  Google Scholar 

  13. Tahira, R., Ikram, M., Nha, H., Zubairy, M.S.: Entanglement of Gaussian states using a beam splitter. Phys. Rev. A 79, 023816 (2009)

    Article  ADS  Google Scholar 

  14. Hu, C.Y., Munro, W.J., OBrien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)

    Article  ADS  Google Scholar 

  15. Zhang, W.M., Feng, D.H., Gilmore, R.: Coherent states: theory and some applications. Rev. Mod. Phys. 62, 867 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  16. Gazeau, J.P.: Coherent States in Quantum Physics. Wiley-VCH, Weinheim (2009)

    Book  Google Scholar 

  17. Comberscure, M., Robert, D.: Coherent States and Applications in Mathematical Physics. Springer, Berlin (2012)

    Book  Google Scholar 

  18. Mańko, V.I., Mendes, R.V.: On the nonlinearity interpretation of q-and f-deformation and some applications. J. Phys. A Math. Gen. 31, 6037 (1998)

    Article  ADS  Google Scholar 

  19. Mańko, V.I., Marmo, G., Solimeno, S., Zaccaria, F.: Physical nonlinear aspects of classical and quantum q-oscillators. Int. J. Mod. Phys. A 8, 3577 (1993)

    Article  ADS  Google Scholar 

  20. Mańko, V.I., Marmo, G., Solimeno, S., Zaccaria, F.: Correlation functions of quantum q-oscillators. Phys. Lett. A 176, 173 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  21. Kilin Ya, S., Mikhalychev, A.B.: Single-atom laser generates nonlinear coherent states. Phys. Rev. A 85, 063817 (2012)

    Article  ADS  Google Scholar 

  22. Mahdifar, A., Roknizadeh, R., Naderi, M.H.: Geometric approach to nonlinear coherent states using the Higgs model for harmonic oscillator. J. Phys. A. 39, 7003 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  24. Roy, B., Roy, P.: New nonlinear coherent states and some of their nonclassical properties. J. Opt. B Quantum Semiclass. Opt. 2, 65 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  25. Macfarlane, A.J.: On q-analogues of the quantum harmonic oscillator and the quantum group q-SU (2). J. Phys. A Math. Gen. 22, 4581 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  26. Mańko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F.: f-Oscillators and nonlinear coherent states. Phys. Scr. 55, 528 (1997)

    Article  ADS  Google Scholar 

  27. Mahdifar, A., Vogel, W., Richter, Th, Roknizadeh, R., Naderi, M.H.: Coherent states of a harmonic oscillator on a sphere in the motion of a trapped ion. Phys. Rev. A 78, 063814 (2008)

    Article  ADS  Google Scholar 

  28. Vogel, K., Akulin, V.M., Schleich, W.P.: Quantum state engineering of the radiation field. Phys. Rev. Lett. 71, 1816 (1993)

    Article  ADS  Google Scholar 

  29. Campos, R.A., Saleh, B.E.A., Teich, M.C.: Quantum-mechanical lossless beam splitter: SU (2) symmetry and photon statistics. Phys. Rev. A 40, 1371 (1989)

    Article  ADS  Google Scholar 

  30. Bose, S., Vedral, V.: Mixedness and teleportation. Phys. Rev. A 61, 040101 (2000)

    Article  ADS  MATH  Google Scholar 

  31. Markham, D., Vedral, V.: Classicality of spin-coherent states via entanglement and distinguishability. Phys. Rev. A 67, 042113 (2003)

    Article  ADS  Google Scholar 

  32. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  33. Katriel, J., Solomon, A.I.: Nonideal lasers, nonclassical light, and deformed photon states. Phys. Rev. A 49, 5149 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Ali Mahdifar wish to thank the Shahrekord University for its support. Shahram Dehdashti and Hongsheng Chen wish to thank the National Natural Science Foundation of China (Grant Nos. 61322501 and 61275183), the National Program for Special Support of Top-Notch Young Professionals, the Program for New Century Excellent Talents (Grant No. NCET-12-0489) in University, and the Fundamental Research Funds for the Central Universities (Grant No. 2014XZZX003-24). Also, Rasoul Roknizadeh wish to thank the University of Isfahan for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Dehdashti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdifar, A., Dehdashti, S., Roknizadeh, R. et al. Curvature detection by entanglement generation using a beam splitter. Quantum Inf Process 14, 2895–2907 (2015). https://doi.org/10.1007/s11128-015-1027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1027-8

Keywords

Navigation