Toward secure communication using intra-particle entanglement


We explore the use of the resource of intra-particle entanglement for secure quantum key distribution in the device-independent scenario. By virtue of the local nature of such entanglement, Bell tests must be implemented locally, which leads to a natural decoupling of device errors from channel errors. We consider a side-channel attack on the sender’s state preparation device, for which the intra-particle entanglement-based scheme is shown to be more secure than the one that uses separable states. Of practical relevance is the fact that such entanglement can be easily generated using linear optics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  2. 2.

    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature (London) 299, 802 (1982)

    Article  ADS  Google Scholar 

  3. 3.

    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, vol. 175. IEEE, New York (1984)

  4. 4.

    Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1 (Long Island City, N.Y.). 195 (1964)

  5. 5.

    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  6. 6.

    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. 7.

    Masanes, Ll, Acin, A., Gisin, N.: General properties of nonsignaling theories. J. Phys. Rev. A 73, 012112 (2006)

    Article  ADS  Google Scholar 

  8. 8.

    Mayers, D., Yao, A.: Quantum cryptography with imperfect apparatus. FOCS 98, 503 (1998)

    Google Scholar 

  9. 9.

    Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  10. 10.

    Scarani, V., Gisin, N., Brunner, N., Masanes, L., Pino, S., Acín, A.: Secrecy extraction from no-signaling correlations. Phys. Rev. A 74, 042339 (2006)

    Article  ADS  Google Scholar 

  11. 11.

    Masanes, L., Pironio, S., Acń, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun. 2(238), 7 (2011)

    Google Scholar 

  12. 12.

    Pironio, S., Acin, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009)

    Article  ADS  Google Scholar 

  13. 13.

    Vidick, M., Vazirani, U.: Fully device independent quantum key distribution. arXiv:1210.1810

  14. 14.

    Basu, S., Bandyopadhyay, S., Kar, G., Home, D.: Bell’s inequality for a single spin-1/2 particle and quantum contextuality. Phys. Lett. A 279, 281 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. 15.

    Hasegawa, Y., Loidl, R., Badurekl, G., Baron, M., Rauch, H.: Violation of a Bell-like inequality in single-neutron interferometry. Nature 425, 45 (2003)

    Article  ADS  Google Scholar 

  16. 16.

    Lim, C.C.W., Portmann, C., Tomamichel, M., Renner, R., Gisin, N.: Device-independent quantum key distribution with local Bell test. Phys. Rev. X 3, 031006 (2013)

    Google Scholar 

  17. 17.

    Mayers, D., Yao, A.: Self testing quantum apparatus. QIC 4, 273 (2004)

    MATH  MathSciNet  Google Scholar 

  18. 18.

    Tomamichel, M., Hänggi, E.: The link between entropic uncertainty and nonlocality. J. Phys. A Math. Theor. 46, 055301 (2013)

    Article  ADS  Google Scholar 

  19. 19.

    Branciard, C., Cavalcanti, E.G., Walborn, S.P., et al.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012)

    Article  ADS  Google Scholar 

  20. 20.

    Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. 21.

    Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  22. 22.

    Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  23. 23.

    Bruss, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)

    Article  ADS  Google Scholar 

  24. 24.

    Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  25. 25.

    Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)

    Article  ADS  Google Scholar 

  26. 26.

    Lo, H.-K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. 27.

    Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99, 180503 (2007)

    Article  ADS  Google Scholar 

  28. 28.

    Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000)

    Article  ADS  Google Scholar 

  29. 29.

    Ling, A., Peloso, M.P., Marcikic, I., Scarini, V., Lamaslinares, A., Kurtsiefer, C.: Experimental quantum key distribution based on a Bell test. Phys. Rev. A 78(R), 020301 (2008)

    Article  ADS  Google Scholar 

  30. 30.

    Acin, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  31. 31.

    Shenoy H., A., Srikanth, R., Home, D., Majumdar, A.S., Adhikari, S., Pan, A.: Combining Goldenberg–Vaidman and Bennett–Brassard-1984 protocols using intra-particle entanglement. Under preparation

  32. 32.

    Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. 33.

    Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  34. 34.

    Scarani, V., Gisin, N.: Quantum communication between N partners and Bell’s inequalities. Phys. Rev. Lett. 87, 117901 (2001)

    Article  ADS  Google Scholar 

  35. 35.

    Scarani, V., Gisin, N.: Quantum key distribution between N partners: optimal eavesdropping and Bell’s inequalities. Phys. Rev. A 65, 012311 (2001)

    Article  ADS  Google Scholar 

  36. 36.

    Mal, S., Pramanik, T., Majumdar, A.S.: Detecting mixedness of qutrit systems using the uncertainty relation. Phys. Rev. A 87, 012105 (2013)

    Article  ADS  Google Scholar 

  37. 37.

    Csizár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24, 339 (1978)

    Article  Google Scholar 

  38. 38.

    Werner, R.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  39. 39.

    Bruss, D.: Characterizing entanglement. J. Math. Phys. 43, 4237 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. 40.

    Roy, S.M.: Multipartite separability inequalities exponentially stronger than local reality inequalities. Phys. Rev. Lett. 94, 010402 (2005)

    Article  ADS  Google Scholar 

  41. 41.

    Acin, A., Massar, S., Pironio, S.: Randomness versus nonlocality and entanglement. Phys. Rev. Lett. 108, 100402 (2012)

    Article  ADS  Google Scholar 

  42. 42.

    Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. quant-ph/0403133

  43. 43.

    Deng, F.-G., Long, G.-L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  44. 44.

    Li, X.H., et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354 (2006)

    Google Scholar 

  45. 45.

    Yan, F.L., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75 (2004)

    Article  ADS  Google Scholar 

  46. 46.

    Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22, 18 (2005)

    Article  ADS  Google Scholar 

  47. 47.

    Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  48. 48.

    Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779 (2011)

    Article  ADS  Google Scholar 

  49. 49.

    Pramanik, T., Adhikari, S., Majumdar, A.S., Home, D.: Proposal for testing nonlocality of single photons in cavities. Phys. Lett. A 376, 344 (2012)

    Article  ADS  MATH  Google Scholar 

Download references


ASM and DH acknowledge support from the Department of Science and Technology, India (DST) Project SR/S2/LOP-08/2013, and RS for the DST-supported Project SR/S2/LOP-02/2012. DH also thanks the Centre for Science, Kolkata for support.

Author information



Corresponding author

Correspondence to R. Srikanth.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adhikari, S., Home, D., Majumdar, A.S. et al. Toward secure communication using intra-particle entanglement. Quantum Inf Process 14, 1451–1468 (2015).

Download citation


  • Cryptography
  • Intra-particle entanglement
  • Bell’s inequality
  • Side channel