Advertisement

Quantum Information Processing

, Volume 14, Issue 4, pp 1451–1468 | Cite as

Toward secure communication using intra-particle entanglement

  • S. Adhikari
  • Dipankar Home
  • A. S. Majumdar
  • A. K. Pan
  • Akshata Shenoy H.
  • R. SrikanthEmail author
Article

Abstract

We explore the use of the resource of intra-particle entanglement for secure quantum key distribution in the device-independent scenario. By virtue of the local nature of such entanglement, Bell tests must be implemented locally, which leads to a natural decoupling of device errors from channel errors. We consider a side-channel attack on the sender’s state preparation device, for which the intra-particle entanglement-based scheme is shown to be more secure than the one that uses separable states. Of practical relevance is the fact that such entanglement can be easily generated using linear optics.

Keywords

Cryptography Intra-particle entanglement Bell’s inequality Side channel 

Notes

Acknowledgments

ASM and DH acknowledge support from the Department of Science and Technology, India (DST) Project SR/S2/LOP-08/2013, and RS for the DST-supported Project SR/S2/LOP-02/2012. DH also thanks the Centre for Science, Kolkata for support.

References

  1. 1.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)CrossRefADSGoogle Scholar
  2. 2.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature (London) 299, 802 (1982)CrossRefADSGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, vol. 175. IEEE, New York (1984)Google Scholar
  4. 4.
    Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1 (Long Island City, N.Y.). 195 (1964)Google Scholar
  5. 5.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)CrossRefADSGoogle Scholar
  6. 6.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    Masanes, Ll, Acin, A., Gisin, N.: General properties of nonsignaling theories. J. Phys. Rev. A 73, 012112 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Mayers, D., Yao, A.: Quantum cryptography with imperfect apparatus. FOCS 98, 503 (1998)Google Scholar
  9. 9.
    Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)CrossRefADSGoogle Scholar
  10. 10.
    Scarani, V., Gisin, N., Brunner, N., Masanes, L., Pino, S., Acín, A.: Secrecy extraction from no-signaling correlations. Phys. Rev. A 74, 042339 (2006)CrossRefADSGoogle Scholar
  11. 11.
    Masanes, L., Pironio, S., Acń, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun. 2(238), 7 (2011)Google Scholar
  12. 12.
    Pironio, S., Acin, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009)CrossRefADSGoogle Scholar
  13. 13.
    Vidick, M., Vazirani, U.: Fully device independent quantum key distribution. arXiv:1210.1810
  14. 14.
    Basu, S., Bandyopadhyay, S., Kar, G., Home, D.: Bell’s inequality for a single spin-1/2 particle and quantum contextuality. Phys. Lett. A 279, 281 (2001)CrossRefADSzbMATHMathSciNetGoogle Scholar
  15. 15.
    Hasegawa, Y., Loidl, R., Badurekl, G., Baron, M., Rauch, H.: Violation of a Bell-like inequality in single-neutron interferometry. Nature 425, 45 (2003)CrossRefADSGoogle Scholar
  16. 16.
    Lim, C.C.W., Portmann, C., Tomamichel, M., Renner, R., Gisin, N.: Device-independent quantum key distribution with local Bell test. Phys. Rev. X 3, 031006 (2013)Google Scholar
  17. 17.
    Mayers, D., Yao, A.: Self testing quantum apparatus. QIC 4, 273 (2004)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Tomamichel, M., Hänggi, E.: The link between entropic uncertainty and nonlocality. J. Phys. A Math. Theor. 46, 055301 (2013)CrossRefADSGoogle Scholar
  19. 19.
    Branciard, C., Cavalcanti, E.G., Walborn, S.P., et al.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012)CrossRefADSGoogle Scholar
  20. 20.
    Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)CrossRefADSGoogle Scholar
  22. 22.
    Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)CrossRefADSGoogle Scholar
  23. 23.
    Bruss, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)CrossRefADSGoogle Scholar
  24. 24.
    Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)CrossRefADSGoogle Scholar
  25. 25.
    Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)CrossRefADSGoogle Scholar
  26. 26.
    Lo, H.-K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99, 180503 (2007)CrossRefADSGoogle Scholar
  28. 28.
    Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000)CrossRefADSGoogle Scholar
  29. 29.
    Ling, A., Peloso, M.P., Marcikic, I., Scarini, V., Lamaslinares, A., Kurtsiefer, C.: Experimental quantum key distribution based on a Bell test. Phys. Rev. A 78(R), 020301 (2008)CrossRefADSGoogle Scholar
  30. 30.
    Acin, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)CrossRefADSGoogle Scholar
  31. 31.
    Shenoy H., A., Srikanth, R., Home, D., Majumdar, A.S., Adhikari, S., Pan, A.: Combining Goldenberg–Vaidman and Bennett–Brassard-1984 protocols using intra-particle entanglement. Under preparationGoogle Scholar
  32. 32.
    Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)CrossRefADSzbMATHMathSciNetGoogle Scholar
  33. 33.
    Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)CrossRefADSGoogle Scholar
  34. 34.
    Scarani, V., Gisin, N.: Quantum communication between N partners and Bell’s inequalities. Phys. Rev. Lett. 87, 117901 (2001)CrossRefADSGoogle Scholar
  35. 35.
    Scarani, V., Gisin, N.: Quantum key distribution between N partners: optimal eavesdropping and Bell’s inequalities. Phys. Rev. A 65, 012311 (2001)CrossRefADSGoogle Scholar
  36. 36.
    Mal, S., Pramanik, T., Majumdar, A.S.: Detecting mixedness of qutrit systems using the uncertainty relation. Phys. Rev. A 87, 012105 (2013)CrossRefADSGoogle Scholar
  37. 37.
    Csizár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24, 339 (1978)CrossRefGoogle Scholar
  38. 38.
    Werner, R.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden variable model. Phys. Rev. A 40, 4277 (1989)CrossRefADSGoogle Scholar
  39. 39.
    Bruss, D.: Characterizing entanglement. J. Math. Phys. 43, 4237 (2002)CrossRefADSzbMATHMathSciNetGoogle Scholar
  40. 40.
    Roy, S.M.: Multipartite separability inequalities exponentially stronger than local reality inequalities. Phys. Rev. Lett. 94, 010402 (2005)CrossRefADSGoogle Scholar
  41. 41.
    Acin, A., Massar, S., Pironio, S.: Randomness versus nonlocality and entanglement. Phys. Rev. Lett. 108, 100402 (2012)CrossRefADSGoogle Scholar
  42. 42.
    Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. quant-ph/0403133
  43. 43.
    Deng, F.-G., Long, G.-L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)CrossRefADSGoogle Scholar
  44. 44.
    Li, X.H., et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354 (2006)Google Scholar
  45. 45.
    Yan, F.L., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75 (2004)CrossRefADSGoogle Scholar
  46. 46.
    Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22, 18 (2005)CrossRefADSGoogle Scholar
  47. 47.
    Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)CrossRefADSGoogle Scholar
  48. 48.
    Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779 (2011)CrossRefADSGoogle Scholar
  49. 49.
    Pramanik, T., Adhikari, S., Majumdar, A.S., Home, D.: Proposal for testing nonlocality of single photons in cavities. Phys. Lett. A 376, 344 (2012)CrossRefADSzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. Adhikari
    • 1
  • Dipankar Home
    • 2
  • A. S. Majumdar
    • 3
  • A. K. Pan
    • 4
  • Akshata Shenoy H.
    • 5
  • R. Srikanth
    • 6
    Email author
  1. 1.Indian Institute of TechnologyJodhpurIndia
  2. 2.CAPSS, Department of PhysicsBose InstituteKolkataIndia
  3. 3.S. N. Bose National Centre for Basic SciencesKolkataIndia
  4. 4.Department of PhysicsNITPatnaIndia
  5. 5.Electrical Communication Engineering DepartmentIIScBangaloreIndia
  6. 6.Poornaprajna Institute of Scientific ResearchBangaloreIndia

Personalised recommendations