Advertisement

Quantum Information Processing

, Volume 14, Issue 4, pp 1151–1178 | Cite as

Approximating ground and excited state energies on a quantum computer

  • Stuart Hadfield
  • Anargyros Papageorgiou
Article

Abstract

Approximating ground and a fixed number of excited state energies, or equivalently low-order Hamiltonian eigenvalues, is an important but computationally hard problem. Typically, the cost of classical deterministic algorithms grows exponentially with the number of degrees of freedom. Under general conditions, and using a perturbation approach, we provide a quantum algorithm that produces estimates of a constant number \(j\) of different low-order eigenvalues. The algorithm relies on a set of trial eigenvectors, whose construction depends on the particular Hamiltonian properties. We illustrate our results by considering a special case of the time-independent Schrödinger equation with \(d\) degrees of freedom. Our algorithm computes estimates of a constant number \(j\) of different low-order eigenvalues with error \(O(\varepsilon )\) and success probability at least \(\frac{3}{4}\), with cost polynomial in \(\frac{1}{\varepsilon }\) and \(d\). This extends our earlier results on algorithms for estimating the ground state energy. The technique we present is sufficiently general to apply to problems beyond the application studied in this paper.

Keywords

Eigenvalue problem Quantum algorithms Excited states Schrödinger equation 

Notes

Acknowledgments

The authors would like to thank Joseph F. Traub for useful comments and suggestions. This research has been supported in part by NSF/DMS.

References

  1. 1.
    Abrams, D.S., Lloyd, S.: Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83, 5162–5165 (1999)CrossRefADSGoogle Scholar
  2. 2.
    Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 20–29. ACM (2003)Google Scholar
  3. 3.
    Andrews, B., Clutterbuck, J.: Proof of the fundamental gap conjecture. J. Am. Math. Soc. 24(3), 899–916 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Aspuru-Guzik, A., Dutoi, A.D., Love, P.J., Head-Gordon, M.: Simulated quantum computation of molecular energies. Science 309(5741), 1704–1707 (2005)CrossRefADSGoogle Scholar
  5. 5.
    Babuska, I., Osborn, J.: Eigenvalue problems. Handb. Numer. Anal. 2, 641 (1991)MathSciNetGoogle Scholar
  6. 6.
    Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Commun. Math. Phys. 270(2), 359–371 (2007)CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bravyi, S., Divincenzo, D.P., Oliveira, R.I., Terhal, B.M.: The complexity of stoquastic local Hamiltonian problems. Quantum Inf. Comput. 8(5), 361–385 (2008)MathSciNetGoogle Scholar
  8. 8.
    Cao, Y., Papageorgiou, A., Petras, I., Traub, J.F., Kais, S.: Quantum algorithm and circuit design solving the Poisson equation. New J. Phys. 15, 013021 (2013)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Childs, A.M., Gosset, D., Webb, Z.: The Bose–Hubbard model is qma-complete. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) Automata, Languages, and Programming. Volume 8572 of Lecture Notes in Computer Science, pp. 308–319. Springer, Berlin (2014)Google Scholar
  10. 10.
    Cullum, J.K., Willoughby, R.A.: Lanczos algorithms for large symmetric eigenvalue computations: vol. 1: theory, vol. 41. SIAM (2002)Google Scholar
  11. 11.
    Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia, PA (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Feynman, R.: Simulating physics with computers. SIAM J. Comput. 26, 1484–1509 (1982)Google Scholar
  13. 13.
    Forsythe, G.E., Wasow, W.R.: Finite-Difference Methods for Partial Differential Equations. Dover, New York (2004)zbMATHGoogle Scholar
  14. 14.
    Furche, F., Rappoport, D.: Density functional methods for excited states: equilibrium structure and electronic spectra. In: Olivucci, M. (ed.) Computational Photochemistry. Theoretical and Computational Chemistry, vol. 16, pp. 93–128. Elsevier, Amsterdam (2005)CrossRefGoogle Scholar
  15. 15.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2012)Google Scholar
  16. 16.
    Gustafson, S.J., Sigal, I.M.: Mathematical Concepts of Quantum Mechanics. Springer, Berlin (2011)zbMATHGoogle Scholar
  17. 17.
    Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory: With Applications to Schrödinger Operators. Number v. 113 in Applied Mathematical Sciences Series. Springer, New York (1996)zbMATHGoogle Scholar
  18. 18.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Kassal, I., Whitfield, J.D., Perdomo-Ortiz, A., Yung, M.-H., Aspuru-Guzik, A.: Simulating chemistry using quantum computers. Ann. Rev. Phys. Chem. 62, 185–207 (2011)CrossRefADSGoogle Scholar
  20. 20.
    Kempe, J., Kitaev, A., Regev, O.: The complexity of the local Hamiltonian problem. SIAM J. Comput. 35(5), 1070–1097 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Klappenecker, A., Rötteler, M.: Discrete cosine transforms on quantum computers. In: Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, pp. 464–468 (2001)Google Scholar
  22. 22.
    Lanyon, B.P., Whitfield, J.D., Gillett, G.G., Goggin, M.E., Almeida, M.P., Kassal, I., Biamonte, J.D., Mohseni, M., Powell, B.J., Barbieri, M., Aspuru-Guzik, A., White, A.G.: Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010)CrossRefGoogle Scholar
  23. 23.
    Leveque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia, PA (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  25. 25.
    Love, P.J.: Back to the future: a roadmap for quantum simulation from vintage quantum chemistry. In: Kais, S. (ed.) Quantum Information and Computation for Chemistry. Advances in Chemical Physics, vol. 154, pp. 39–66. Wiley, Hoboken, NJ (2014)CrossRefGoogle Scholar
  26. 26.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  27. 27.
    Papageorgiou, A.: On the complexity of the multivariate Sturm–Liouville eigenvalue problem. J. Complex. 23(4–6), 802–827 (2007)CrossRefzbMATHGoogle Scholar
  28. 28.
    Papageorgiou, A., Petras, I.: Estimating the ground state energy of the Schrödinger equation for convex potentials. J. Complex. 30, 469–494 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Papageorgiou, A., Petras, I., Traub, J.F., Zhang, C.: A fast algorithm for approximating the ground state energy on a quantum computer. Math. Comput. 82(284), 2293–2304 (2014)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Papageorgiou, A., Traub, J.F.: Measures of quantum computing speedup. Phys. Rev. A 88(2), 022316 (2013)CrossRefADSGoogle Scholar
  31. 31.
    Papageorgiou, A., Zhang, C.: On the efficiency of quantum algorithms for Hamiltonian simulation. Quantum Inf. Process. 11, 541–561 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Parlett, B.N.: The Symmetric Eigenvalue Problem, vol. 7. SIAM, Philadelphia (1980)zbMATHGoogle Scholar
  33. 33.
    Schuch, N., Verstraete, F.: Computational complexity of interacting electrons and fundamental limitations of density functional theory. Nat. Phys. 5(10), 732–735 (2009)CrossRefGoogle Scholar
  34. 34.
    Strang, G., Fix, G.J.: An Analysis of the Finite Element Method, 2nd edn. Wellesley-Cambridge Press, Wellesley (2008)Google Scholar
  35. 35.
    Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146(6), 319–323 (1990)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Suzuki, M.: General theory of fractal path integrals with application to many-body theories and statistical physics. J. Math. Phys. 32, 400–407 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
  37. 37.
    Titchmarsh, E.C.: Eigenfunction Expansions: Associated with Second-Order Differential Equations. Oxford University Press, Oxford (1962)zbMATHGoogle Scholar
  38. 38.
    Wei, T.-C., Mosca, M., Nayak, A.: Interacting boson problems can be QMA hard. Phys. Rev. Lett. 104(4), 040501 (2010)CrossRefADSGoogle Scholar
  39. 39.
    Weinberger, H.F.: Upper and lower bounds for eigenvalues by finite difference methods. Commun. Pure Appl. Math. 9(3), 613–623 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Weinberger, H.F.: Lower bounds for higher eigenvalues by finite difference methods. Pac. J. Math. 8(2), 339–368 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Wickerhauser, M.V.: Adapted Wavelet Analysis from Theory to Software. A.K. Peters, Wellesley, MA (1994)zbMATHGoogle Scholar
  42. 42.
    Zalka, C.: Efficient simulation of quantum systems by quantum computers. Fortschr. Phys. 46(6–8), 877–879 (1998)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Zalka, C.: Simulating quantum systems on a quantum computer. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1969), 313–322 (1998)CrossRefADSzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceColumbia UniversityNew YorkUSA

Personalised recommendations