Quantum Information Processing

, Volume 14, Issue 1, pp 147–164 | Cite as

Variable entangling in a quantum prisoner’s dilemma cellular automaton

Article

Abstract

The effect of variable entangling on the dynamics of a spatial quantum formulation of the iterated prisoner’s dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The effect of spatial structure is assessed when allowing the players to adopt quantum and classical strategies, both in the two- and three-parameter strategy spaces.

Keywords

Quantum games Entangling Spatial Cellular automata 

References

  1. 1.
    Alonso-Sanz, R.: A quantum prisoner’s dilemma cellular automaton. Proc. R. Soc. A 470, 20130793 (2014)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alonso-Sanz, R.: On a three-parameter quantum battle of the sexes cellular automaton. Quantum Inf. Process. 12(5), 1835–1850 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Alonso-Sanz, R.: A quantum battle of the sexes cellular automaton. Proc. R. Soc. A 468, 3370–3383 (2012)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alonso-Sanz, R.: Dynamical Systems with Memory. World Scientific Pub., Singapore (2011)Google Scholar
  5. 5.
    Benjamin, S.C., Hayden, P.M.: Comment on “quantum games and quantum strategies”. Phys. Rev. Lett. 87(6), 069801 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Binmore, K.: Fun and Games. D.C.Heath, Lexington (1992)MATHGoogle Scholar
  7. 7.
    Bleiler, S. : A Formalism for Quantum Games and an Application. http://arxiv.org/abs/0808.1389 (2008)
  8. 8.
    Branderburger, A.: The relationship between quantum and classical correlation games. Games Econ. Behav. 89, 157–183 (2010)Google Scholar
  9. 9.
    Du, J.F., Xu, X.D., Li, H., Zhou, X., Han, R., et al.: Entanglement playing a dominating role in quantum games. Phys. Lett. A 289(1–2), 9–15 (2001)ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Du, J.F., Li, H., Xu, X.D., Zhou, X., Han, R.: Phase-transition-like behaviour of quantum games. J. Phys. A Math. Gen. 36(23), 6551–6562 (2003)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Du, J.F., Xu, X.D., Li, H., Zhou, X., Han, R.: Entanglement enhanced multiplayer quantum games. Phys. Lett. A 302, 222–233 (2002)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47(14–15), 2543–2556 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Flitney, A.P., Hollenberg, L.C.L.: Nash equilibria in quantum games with generalized two-parameter strategies. Phys. Lett. A 363, 381–388 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Flitney, A.P., Abbott, D.: Advantage of a quantum player over a classical one in 2x2 quantum games. Proc. R. Soc. Lond. A 459(2038), 2463–2474 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Flitney A.P., Abbott, D.: An introduction to quantum game theory. Fluct. Noise Lett. 02, R175. http://arxiv.org/pdf/quant-ph/0208069 (2002)
  17. 17.
    Khan, F.S., Phoenix, S.J.D.: Gaming the quantum. Quantum Inf. Comput. 13(3–4), 231–244. http://arxiv.org/pdf/1202.1142 (2013)
  18. 18.
    Landsburg, S.E.: Quantum game theory. In: The Wiley Encyclopedia of Operations Research and Management Science. http://arxiv.org/pdf/1110.6237v1 (2011)
  19. 19.
    Landsburg, S.E.: Quantum game theory. Not. AMS. http://www.ams.org/notices/200404/fea-landsburg (2004)
  20. 20.
    Levine, D.K. : Quantum Games Have No News for Economists. http://levine.sscnet.ucla.edu/papers/quantumnonews (2005)
  21. 21.
    Li, Q., Iqbal, A., Perc, M., Chen, M., Abbott, D.: Coevolution of quantum and classical strategies on evolving random networks. PloS One 8(7), e68423 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Li, Q., Iqbal, A., Chen, M., Abbott, D.: Quantum strategies win in a defector-dominated population. Physica A 391, 3316–3322 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Li, Q., Iqbal, A., Chen, M., Abbott, D.: Evolution of quantum and classical strategies on networks by group interactions. New J. Phys. 14(10), 103034 (2012)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Miszczak, J.A., Pawela, L., Sladkowski, J. : General model for an entanglement-enhanced composed quantum game on a two-dimensional lattice. Fluct. Noise Lett. 13(2), 1450012. http://arxiv.org/abs/1306.4506 (2014)
  27. 27.
    Nawaz, A., Toor, A.H.: Dilemma and quantum battle of sexes. J. Phys. A Math. Gen. 37(15), 4437–4443 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Nawaz, A., Toor, A.H.: Generalized quantization scheme for two-person non-zero sum games. J. Phys. A Math. Gen. 37(42), 365305 (2004)Google Scholar
  29. 29.
    Nowak, N.M., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    Nowak, M.A., May, R.M.: The spatial dilemmas of evolution. Int. J. Bifurc. Chaos 3(11), 35–78 (1993)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Owen, G.: Game Theory. Academic Press, Waltham (1995)MATHGoogle Scholar
  32. 32.
    Phoenix, S.J.D., Khan, F.S.: The role of correlations in classical and quantum games. Fluct. Noise Lett. 12(3), 1350011 (2013)CrossRefGoogle Scholar
  33. 33.
    Piotrowski, E.W., Sladkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42(5), 1089–1099 (2003)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Schiff, J.L.: Cellular Automata: A Discrete View of the World. Wiley, New York (2008)Google Scholar
  35. 35.
    Wiesner, K.: Quantum Cellular automata. Encycl. Complex. Syst. Sci., 7154–7164. http://arxiv.org/abs/0808.0679 (2009)

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.ETSIA (Estadística, GSC)Technical University of MadridMadridSpain

Personalised recommendations