Skip to main content
Log in

Nondestructive photonic polarization Greenberger–Horne–Zeilinger states analyzer assisted by quantum-dot cavity systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nondestructive entangled-state analyzers could save the physical entanglement resource and boost the efficiency of quantum information processing (QIP). However, up to now, there is no much progress in the nondestructive analysis of Greenberger–Horne–Zeilinger (GHZ) states. In this paper, a nondestructive photonic polarization GHZ-state analyzer, based on the interaction between circularly polarized light and quantum-dot cavity systems, is proposed. We can distinguish the GHZ states deterministically in theory, and the states are not destroyed because no single-photon detectors are required. Our scheme can be extended to \(n\)-photon GHZ states analysis directly and can be used to achieve QIP with less resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Enstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  4. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)

    Article  ADS  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. Hou, K., Liu, G.H., Zhang, X.Y., et al.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multi-qubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shi, R.H., Huang, L.S., Yang, W., et al.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10(2), 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. ukowski, M., Zeilinger, A., Horne, M.A., et al.: Event-ready-detectors’ Bell experiment via entanglement swapping. Phys. Rev. Lett 71(26), 4287–4290 (1993)

    Article  ADS  Google Scholar 

  10. Calsamiglia, J.: Generalized measurements by linear elements. Phys. Rev. A 65(3), 030301 (2002)

    Article  ADS  Google Scholar 

  11. Pan, J.W., Zeilinger, A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57(3), 2208–2211 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  12. Van Houwelingen, J.A.W., Brunner, N., Beveratos, A., et al.: Quantum teleportation with a three-Bell-state analyzer. Phys. Rev. Lett. 96(13), 130502 (2006)

    Article  MathSciNet  Google Scholar 

  13. Walborn, S.P., Pádua, S., Monken, C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68(4), 042313 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  14. Song, S.Y., Cao, Y., Sheng, Y.B., et al.: Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement. Quantum Inf. Process. 12(1), 381–393 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Guo, Q., Bai, J., Cheng, L.Y., et al.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83(5), 054303 (2011)

    Article  ADS  Google Scholar 

  16. Qian, J., Feng, X.L., Gong, S.Q.: Universal Greenberger–Horne–Zeilinger-state analyzer based on two-photon polarization parity detection. Phys. Rev. A 72(5), 052308 (2005)

    Article  ADS  Google Scholar 

  17. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82(3), 032318 (2010)

    Article  ADS  Google Scholar 

  18. Xia, Y., Chen, Q.Q., Song, J., et al.: Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29(5), 1029–1037 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  19. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(12), 127902 (2004)

    Article  ADS  Google Scholar 

  20. Mei, F., Feng, M., Yu, Y.F., et al.: Scalable quantum information processing with atomic ensembles and flying photons. Phys. Rev. A 80(4), 042319 (2009)

    Article  ADS  Google Scholar 

  21. Lin, X.M., Chen, Z.H., Lin, G.W., et al.: Optical Bell state and Greenberger–Horne–Zeilinger-state analyzers through the cavity input-output process. Opt. Commun. 282(16), 3371–3374 (2009)

    Article  ADS  Google Scholar 

  22. Nowack, K.C., Koppens, F.H.L., Nazarov, Y.V., et al.: Coherent control of a single electron spin with electric fields. Science 318(5855), 1430–1433 (2007)

    Article  ADS  Google Scholar 

  23. Mikkelsen, M.H., Berezovsky, J., Coldren, L.A., et al.: Optically detected coherent spin dynamics of a single electron in a quantum dot. Nat. Phys. 3(10), 770–773 (2007)

    Article  Google Scholar 

  24. Xu, X., Sun, B., Berman, P.R., et al.: Coherent optical spectroscopy of a strongly driven quantum dot. Science 317(5840), 929–932 (2007)

    Article  ADS  Google Scholar 

  25. Hu, C.Y., Young, A., OBrien, J.L., et al.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78(8), 085307 (2008)

    Article  ADS  Google Scholar 

  26. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83(11), 115303 (2011)

    Article  ADS  Google Scholar 

  27. Bonato, C., Haupt, F., Oemrawsingh, S.S.R., et al.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104(16), 160503 (2010)

    Article  ADS  Google Scholar 

  28. Ren, B.C., Wei, H.R., Hua, M., et al.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20(22), 24664–24677 (2012)

    Article  ADS  Google Scholar 

  29. Liu, Q., Zhang, M.: Complete and deterministic analysis for spatial-polarization hyperentangled Greenberger–Horne–Zeilinger states with quantum-dot cavity systems. J. Opt. Soc. Am. B 30(8), 2263–2270 (2013)

    Article  ADS  Google Scholar 

  30. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85(6), 062311 (2012)

    Article  ADS  Google Scholar 

  31. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87(2), 022305 (2013)

    Article  ADS  Google Scholar 

  32. Sheng, Y.B., Zhou, L., Wang, L.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12(5), 1885–1895 (2013)

    Article  ADS  MATH  Google Scholar 

  33. Sheng, Y.B., Zhou, L.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. J. Opt. Soc. Am. B 30(3), 678–686 (2013)

    Article  ADS  Google Scholar 

  34. Wang, C., He, L.Y., Zhang, Y., et al.: Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system. Scie. China Phys. Mech. Astron. 56(11), 2054–2058 (2013)

    Article  ADS  Google Scholar 

  35. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    ADS  Google Scholar 

  36. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  37. Reithmaier, J.P., Sek, G., Löffler, A., et al.: Strong coupling in a single quantum dot semiconductor microcavity system. Nature 432(7014), 197–200 (2004)

    Article  ADS  Google Scholar 

  38. Yoshie, T., Scherer, A., Hendrickson, J., et al.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432(7014), 200–203 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 61275059 and No. 61307062) and the Scientific Research Foundation of Graduate School of South China Normal University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Sheng Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, RT., Liang, RS. & Wang, FQ. Nondestructive photonic polarization Greenberger–Horne–Zeilinger states analyzer assisted by quantum-dot cavity systems. Quantum Inf Process 13, 2719–2729 (2014). https://doi.org/10.1007/s11128-014-0823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0823-x

Keywords

Navigation