Abstract
With the overwhelming success in the field of quantum information in the last decades, the ‘quest’ for a Quantum Neural Network (QNN) model began in order to combine quantum computing with the striking properties of neural computing. This article presents a systematic approach to QNN research, which so far consists of a conglomeration of ideas and proposals. Concentrating on Hopfield-type networks and the task of associative memory, it outlines the challenge of combining the nonlinear, dissipative dynamics of neural computing and the linear, unitary dynamics of quantum computing. It establishes requirements for a meaningful QNN and reviews existing literature against these requirements. It is found that none of the proposals for a potential QNN model fully exploits both the advantages of quantum physics and computing in neural networks. An outlook on possible ways forward is given, emphasizing the idea of Open Quantum Neural Networks based on dissipative quantum computing.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
The Hamming distance is the number of state flips to turn one binary string into another one, thus measuring the overlap between two binary strings [30].
A problem is linearly separable if the respective outputs in phase space can be divided by a hyperplane. Perceptrons can only compute linear separable problems.
References
Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Rev Mod. Phys. 78(4), 1213 (2006)
McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5(4), 115–133 (1943)
Kak, C.S.: Quantum neural computing. Adv. Imaging Electron Phys. 94, 259–313 (1995)
Freeman, W.J., Vitiello, G.: Dissipation and spontaneous symmetry breaking in brain dynamics. J. Phys. A Math. Theor. 41(30), 304042 (2008)
Hameroff, S.: Quantum computation in brain microtubules? The penrose-hameroff ’orch or’ model of consciousness. Philos. Trans. Math. Phys. Eng. Sci. 356(1743), 1869–1896 (1998)
Tegmark, M.: Importance of quantum decoherence in brain processes. Phys. Rev. E 61(4), 4194 (2000)
Massimo Panella and Giuseppe Martinelli: Neural networks with quantum architecture and quantum learning. Int. J. Circuit Theory Appl. 39(1), 61–77 (2011)
Gerasimos, G.: Neurodynamics and attractors in quantum associative memories. Integr. Comput. Aided Eng. 14(3), 225–242 (2007)
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning (preprint). arXiv:1307.0411 (2013)
Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)
Wiebe, Nathan., Kapoor, Ashish., Svore, Krysta.: Quantum nearest-neighbor algorithms for machine learning (preprint). arXiv:1401.2142 (2014)
Shor, W.P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Andrecut, M., Ali, M.K.: A quantum neural network model. Int. J. Mod. Phys. C 13(01), 75–88 (2002)
Altaisky, M.V.: Quantum neural network (preprint). quant-ph/0107012 (2001)
Sanjay Gupta and RKP Zia: Quantum neural networks. J. Comput. Syst. Sci. 63(3), 355–383 (2001)
lisabeth, E., Behrman, C., Chandrashekar, V., Wang, Z., Belur, C.K., Steck, James, E., Skinner, S.R.: A quantum neural network computes entanglement (preprint) quant-ph/0202131 (2002)
Li, F., Zheng, B.: A study of quantum neural networks. In: Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, 2003, vol. 1, pp. 539–542. IEEE (2003)
Zhou, R., Wang, H., Qian, W., Shi, Y.: Quantum associative neural network with nonlinear search algorithm. Int. J. Theor. Phys. 51(3), 705–723 (2012)
Oliveira, W., Silva, A.J., Ludermir, T.B., Leonel, A., Galindo, W.R., Pereira, J.C.C.: Quantum logical neural networks. In: 10th Brazilian Symposium on Neural Networks, 2008. SBRN’08. pp. 147–152. IEEE (2008)
Tóth, G., Lent, C.S., Tougaw, P.D., Brazhnik, Y., Weng, W., Porod, W., Liu, R.-W., Huang, Y.-F.: Quantum cellular neural networks (preprint). cond-mat/0005038 (2000)
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)
Ezhov, A., Ventura, D.: Quantum neural networks. In: Future directions for intelligent systems and information sciences, pp. 213–234 (2000)
Breuer, H.P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, Oxford (2002)
Verstraete, F., Wolf, M.M., Cirac, J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5(9), 633–636 (2009)
Purves, D.: Neuroscience, 3rd edn. Sinauer, Sunderland (2008)
Abbott, L.F., Regehr, W.G.: Synaptic computation. Nature 431(7010), 796–803 (2004)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79(8), 2554–2558 (1982)
Rojas, R.: Neural Nets: A Systematic Introduction. Springer, New York (1996)
John, J.: Hopfield and David W Tank. Computing with neural circuits- a model. Science 233(4764), 625–633 (1986)
Richard, W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)
Amit, D.J., Gutfreund, H., Sompolinsky, H.: Spin-glass models of neural networks. Phys. Rev. A 32(2), 1007–1018 (1985)
van Hemmen, J.L.: Spin-glass models of a neural network. Phys. Rev. A 34(4), 3435–3445 (1986)
Hertz, J.A., Krogh, A.S., Palmer, R.G.: Introduction to the Theory of Neural Computation, vol. 1. Westview Press, Boulder (1991)
Mehrotra, K., Mohan, C.K., Ranka, S.: Elements of Artificial Neural Networks. MIT Press, Cambridge (1996)
Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(10), 3088–3092 (1984)
DiVincenzo, D.P. et al.: The physical implementation of quantum computation. (preprint) quant-ph/0002077 (2000)
Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5(1), 19–26 (2009)
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (preprint). quant-ph/0001106 (2000)
Gui Lu Long: Duality quantum computing and duality quantum information processing. Int. J. Theor. Phys. 50(4), 1305–1318 (2011)
Menneer, T., Narayanan, A.: Quantum-inspired neural networks. Department of Computer Science, University of Exeter, UK, Technical Report 329 (1995)
Peruš, M.: Neural networks as a basis for quantum associative networks. Neural Netw. World 10(6), 1001–1013 (2000)
Zak, M., Williams, C.P.: Quantum neural nets. Int. J. Theor. Phys. 37(2), 651–684 (1998)
Behrman, E.C., Steck, J.E., Skinner, S.R.: A spatial quantum neural computer. In: International Joint Conference on Neural Networks, 1999. IJCNN’99. vol. 2, pp. 874–877. IEEE (1999)
Faber, J., Giraldi, G.A.: Quantum models for artificial neural networks. Electronically available: http://arquivosweb.lncc.br/pdfs/QNN-Review.pdf (2002)
Silva, A.J., Ludermir, T.B., de Oliveira, W.R.: Superposition based learning algorithm. In: 2010 Eleventh Brazilian Symposium on Neural Networks (SBRN), pp. 1–6. IEEE (2010)
Goncalves, C.P.: Quantum cybernetics and complex quantum systems science—a quantum connectionist exploration (preprint). arXiv:1402.1141v1 (2014)
Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 124(1), 273–296 (2000)
Trugenberger, A.C.: Probabilistic quantum memories. Phys. Rev. Lett. 87, 067901 (Jul 2001)
Andrecut, M., Ali, M.K.: Quantum associative memory. Int. J. Mod. Phys. B 17(12), 2447–2472 (2003)
Siomau, M.: Quantum perceptron (preprint). arXiv:1210.6626 (2012)
Zak, M., Williams, C.P.: Quantum Recurrent Networks for Simulating Stochastic Processes. Springer, Berlin (1999)
Behrman, E.C., Nash, L.R., Steck, J.E., Chandrashekar, A.A., Skinner, S.R.: Simulations of quantum neural networks. Inf. Sci. 128(3), 257–269 (2000)
Behrman, E.C., Steck, J.E.: A quantum neural network computes its own relative phase (preprint). arXiv:1301.2808 (2013)
da Adenilton, J., de Silva, W.R., Oliveira, T.B.Ludermir: Classical and superposed learning for quantum weightless neural networks. Neurocomputing 75(1), 52–60 (2012)
Long, G.-L., Sun, Y.: Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev. A 64(1), 014303 (2001)
Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching (preprint). quant-ph/9605034 (1996)
Trugenberger, C.A.: Quantum pattern recognition. Quantum Inf. Process. 1(6), 471–493 (2002)
Sagheer, A., Zidan, M.: Autonomous quantum perceptron neural network (preprint). arXiv:1312.4149v1 (2013)
Weigang, L.: Entangled neural networks. Department of Computer Science, University of Brasilia, CP, 4466, 70919-970 (2000)
Segher, A.A., Metwally, N.: Communication via quantum neural network (preprint) arXiv:0912.2512 (2009)
Neigovzen, R., Neves, J.L., Sollacher, R., Glaser, S.J.: Quantum pattern recognition with liquid-state nuclear magnetic resonance. Phys. Rev. A. 79(4), 042321 (2009)
Li, F., Zhao, S., Zheng, B.: Quantum neural network in speech recognition. In: 6th International Conference on Signal Processing, 2002, vol. 2, pp. 1267–1270. IEEE (2002)
Purushothaman, G., Karayiannis, N.B.: Quantum neural networks (qnns): inherently fuzzy feedforward neural networks. IEEE Trans. Neural Netw. 8(3), 679–693 (1997)
Schneidman, E., Michael, J.B., Ronen, S., William, B.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006)
Nishimori, H., Nonomura, Y.: Quantum effects in neural networks. J. Phys. Soc. Jpn. 65(12), 3780–3796 (1996)
Attal, S., Petruccione, F., Sinayskiy, I.: Open quantum walks on graphs. Phys. Lett. A 376(18), 1545–1548 (2012)
Sinayskiy, I., Petruccione, F.: Efficiency of open quantum walk implementation of dissipative quantum computing algorithms. Quantum Inf. Process. 11(5), 1301–1309 (2012)
Bauer, M., Bernard, D., Tilloy, A.: Open quantum random walks: bistability on pure states and ballistically induced diffusion. Phys. Rev. A 88, 062340 (Dec 2013)
Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)
Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum walks on graphs representing the firing patterns of a quantum neural network. Phys. Rev. A 89(3), 032333 (2014)
Ball, P.: The dawn of quantum biology. Nature 474(7351), 272–274 (2011)
Acknowledgments
This work is based upon research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schuld, M., Sinayskiy, I. & Petruccione, F. The quest for a Quantum Neural Network. Quantum Inf Process 13, 2567–2586 (2014). https://doi.org/10.1007/s11128-014-0809-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-014-0809-8