On implementing nondestructive triplet Toffoli gate with entanglement swapping operations via the GHZ state analysis


We investigate an novel implementation of a Toffoli gate using multiple independent auxiliary photons prepared beforehand in single-qubit states. This gate can be performed nondestructively with entanglement swapping via the Greenberger–Horne–Zeilinger state analysis. We evaluate the performance of the proposed Toffoli gate with the fidelity based on different computation bases. The multi-qubit-entanglement gate is no longer theoretical since it can be implemented in principle with single-qubit photons.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. 2.

    Guo, Y., Zeng, G.: Large-capability quantum key distribution with entangled qutrits. Opt. Commun. 281, 3938 (2008)

    Article  ADS  Google Scholar 

  3. 3.

    Zhang, J., He, G., Zeng, G.: Equivalence of continuous-variable stabilizer states under local Clifford operations. Phys. Rev. A 80, 052333 (2009)

    Article  ADS  Google Scholar 

  4. 4.

    Xu, X., Xu, J., Li, C., Zou, Y., Guo, G.: Experimental demonstration of nonlocal effects in the partial-collapse measurement and reversal process. Phys. Rev. A 83, 010101 (2011)

    Article  ADS  Google Scholar 

  5. 5.

    Kiesel, N., et al.: Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005)

    Article  ADS  Google Scholar 

  6. 6.

    Okamoto, R., et al.: Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95, 210506 (2005)

    Article  ADS  Google Scholar 

  7. 7.

    Zhao, Z., et al.: Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits. Phys. Rev. Lett. 94, 030501 (2005)

    Article  ADS  Google Scholar 

  8. 8.

    Gasparoni, S., et al.: Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004)

    Article  ADS  Google Scholar 

  9. 9.

    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  10. 10.

    Duan, L.M., Raussendorf, R.: Efficient quantum computation with probabilistic quantum gates. Phys. Rev. Lett. 95, 080503 (2005)

    MathSciNet  Article  ADS  Google Scholar 

  11. 11.

    Pittman, T.B., Jacobs, B.C., Franson, J.D.: Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 062311 (2001)

    Article  ADS  Google Scholar 

  12. 12.

    Hofmann, H.F.: Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. Phys. Rev. Lett. 94, 160504 (2005)

    MathSciNet  Article  ADS  Google Scholar 

  13. 13.

    Guo, Y., Kuang, H., Huang, D., Zhao, Z.: Polarization entanglement concentrations with less-hyperentangled photon pairs in multiple degrees of freedom. Int. J. Quantum Inf. 10, 1250075 (2013)

  14. 14.

    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345 (1999)

    MathSciNet  Article  ADS  MATH  Google Scholar 

  15. 15.

    Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001)

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dazu Huang.

Additional information

This work was supported by the National Natural Science Foundation of China (61272495, 61379153), the New Century Excellent Talents in University, China (NCET-11-0510).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhao, Z., Wang, Y. et al. On implementing nondestructive triplet Toffoli gate with entanglement swapping operations via the GHZ state analysis. Quantum Inf Process 13, 2039–2047 (2014). https://doi.org/10.1007/s11128-014-0798-7

Download citation


  • Entanglement swapping
  • Entanglement analysis
  • Toffoli gate