Skip to main content
Log in

Joint remote state preparation between multi-sender and multi-receiver

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, novel schemes for joint remote state preparation are presented, which involve N senders and 2 receivers as well as N senders and 3 receivers. The receivers can simultaneously reconstruct different qubit states containing the joint information from all senders. Compared with the protocols proposed by Su et al. (Int J Quantum Inf 10:1250006 (2012), the information of the prepared states in our schemes is distributed in a different way. Our protocols can be applied not only to states with real parameters but also ones with complex parameters. Moreover, the N-to-2 protocol is suitable for general qubit states besides equatorial states, and the receivers need not to perform any measurements and CNOT gates to reconstruct the states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosenchannels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Lee, H.W., Kim, J.: Quantum teleportation and Bell’s inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2001)

    Article  ADS  Google Scholar 

  3. Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  Google Scholar 

  4. Zhou, J.-D., Hou, G., Zhang, Y.-D.: Teleportation scheme of S-level quantum pure states by two-level Einstein–Podolsky–Rosen states. Phys. Rev. A 64, 012301 (2001)

    Article  ADS  Google Scholar 

  5. Wang, X.-G.: Quantum teleportation of entangled coherent states. Phys. Rev. A 64, 022302 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  6. van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)

    Article  ADS  Google Scholar 

  7. Bouwmeester, D.Pan, J.-W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  8. Braunstein, S.L., Kimble, H.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998)

    Article  ADS  Google Scholar 

  9. Furusawa, A., Srensen, J.L., Braunstein, S.L., et al.: Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  10. Jin, X.-M., Ren, J.-G., Yang, B., et al.: Experimental free-space quantum teleportation. Nat. Photon. 4, 376–381 (2010)

    Article  ADS  Google Scholar 

  11. Huang, Y.-F., Ren, X.-F., Zhang, Y.-S., Duan, L.-M., Guo, G.-C.: Experimental teleportation of a quantum controlled-NOT gate. Phys. Rev. Lett. 93, 240501 (2004)

    Article  ADS  Google Scholar 

  12. Christian, N., Andreas, N., Andreas, R., et al.: Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110, 140403 (2013)

    Article  Google Scholar 

  13. Nilsson, J., Stevenson, R.M., Chan, K.H.A., et al.: Quantum teleportation using a light-emitting diode. Nat. Photon. 7, 311–315 (2013)

    Article  ADS  Google Scholar 

  14. Friis, N., Lee, A.R., Truong, K., et al.: Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett. 110, 113602 (2013)

    Article  ADS  Google Scholar 

  15. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  17. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  18. Zheng, Y.-Z., Gu, Y.-J., Guo, G.-C.: Remote state preparation via a non-maximally entangled channel. Chin. Phys. Lett. 19, 14–16 (2002)

    Article  ADS  Google Scholar 

  19. Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold \(S^{n-1}\). Phys. Rev. A 65, 022316 (2002)

    Article  ADS  Google Scholar 

  20. Shi, B.-S., Tomita, A.: Remote state preparation of an entangled state. J. Phys. B At. Mol. Opt. Phys. 4, 380–382 (2002)

    MathSciNet  Google Scholar 

  21. Berry, D.-W., Sanders, B.-C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  22. Leung, D.-W., Shor, P.-W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  23. Hayashi, A., Hashimoto, T., Horibe, M.: Remote state preparation without oblivious conditions. Phys. Rev. A 67, 052302 (2003)

    Article  ADS  Google Scholar 

  24. Yu, C., Song, H., Wang, Y.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)

    Article  ADS  Google Scholar 

  25. Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72, 052315 (2005)

    Article  ADS  Google Scholar 

  26. Lee, S.: Bound on remote preparation of entanglement from isotropic states. Phys. Rev. A 85, 052311 (2012)

    Article  ADS  Google Scholar 

  27. Peng, X.-H., Zhu, X.-W., Fang, X.-M., et al.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271–276 (2003)

    Article  ADS  Google Scholar 

  28. Barreiro, J.T., Wei, T.-C., Kwiat, P.G.: Remote preparation of single-photon ’Hybrid’ entangled and vector-polarization states. Phys. Rev. Lett. 105, 3 (2010)

    Article  Google Scholar 

  29. Xia, Y., Song, J., Song, H.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40, 3719–3724 (2007)

    Article  ADS  Google Scholar 

  30. An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41, 095501 (2008)

    Article  ADS  Google Scholar 

  31. An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42, 125501 (2009)

    Article  ADS  Google Scholar 

  32. An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113–4117 (2010)

    Article  ADS  Google Scholar 

  33. Wang, D., Zha, X.-W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284, 5853–5855 (2011)

    Article  ADS  Google Scholar 

  34. Hou, K., Li, Y.-B., Liu, G.-H., Sheng, S.-Q.: Joint remote state preparation of arbitrary two-qubit state via GHZ-type states. J. Phys. A Math. Theor. 44, 255304 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Xiao, X.-Q., Liu, J.-M., Zeng, G.-H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44, 075501 (2011)

    Article  ADS  Google Scholar 

  36. An, N.B., Van Thi Bich, C., Don, N.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570–3573 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Chen, Q.-Q., Xia, Y., An, N.B.: Flexible deterministic joint remote state preparation with a passive receiver. Phys. Scr. 87, 025005 (2013)

    Article  ADS  MATH  Google Scholar 

  38. Luo, M.-X., Chen, X.-B., Ma, S.-Y., Niu, X.-X., Yang, Y.-X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796–4801 (2010)

    Article  ADS  Google Scholar 

  39. Chen, Q.-Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284, 2617–2621 (2011)

    Article  ADS  Google Scholar 

  40. Xia, Y., Chen, Q.-Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver. J. Phys. A Math. Theor. 45, 335306 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. An, N.B., Thi Bich, C., Van Don, N.: Joint remote preparation of four-qubit cluster-type states revisited. J. Phys. B: At. Mol. Opt. Phys. 44, 135506 (2011)

    Article  ADS  Google Scholar 

  42. Wang, D., Ye, L.: Probabilistic joint remote preparation of four-particle cluster-type states with quaternate partially entangled channels. Int. J. Theor. Phys. 51, 3376–3386 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Luo, M.-X., Deng, Y.: Joint remote preparation of an arbitrary 4-qubit \(\chi \)-state. Int. J. Theor. Phys. 51, 3027–3036 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Luo, M.-X., Peng, J.-Y., Mo, Z.-W.: Joint remote preparation of an arbitrary five-qubit Brown state. Int. J. Theor. Phys. 52, 644–653 (2013)

    Article  MATH  Google Scholar 

  45. Chen, Q.-Q., Xia, Y., Song, J.: Probabilistic joint remote preparation of a two-particle high-dimensional equatorial state. Opt. Commun. 284, 5031–5035 (2011)

    Article  ADS  Google Scholar 

  46. Hou, K., Wang, J., Lu, Y.-L., Shi, S.-H.: Joint remote preparation of a multipartite GHZ-class state. Int. J. Theor. Phys. 48, 2005–2015 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Su, Y., Chen, X.-B., Yang, Y.-Y.: N-to-M joint remote state preparation of 2-level states. Int. J. Quantum Inf. 10, 1250006 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hillery, M., Bužek, V., Bethiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  49. Gootesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  50. Peng, J.-Y., Luo, M.-X., Mo, Z.-W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325–2342 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and referee for valuable comments and suggestions. This work is supported by National Nature Science Foundation of China (Grant Nos. 11071178, 61303039, 61201253), Fundamental Research Funds for Central Universities (Nos. 10801X10096022, 2682014CX095) and Outstanding Doctoral Student Academic Support Program of UESTC in 2013 (No. YBXSZC20131045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hua Zhang.

Appendices

Appendix 1

In this appendix, we exhibit the remained outcomes of \(A_{1}\) and \(A_{2}\) and the respective projective measurements of \(B_1\) and \(B_2\) in 2-to-2 JRSP.

Case 2.1 The measurement result of \(A_{1}\) and \(A_{2}\) is \((1,1)\) or \((11,11)\). Then, \(B_{1}\) and \(B_{2}\) will make projective measurements under the following basis

$$\begin{aligned} \left( \begin{array}{cccc} |v_{11}^{0}\rangle , &{} |v_{11}^{1}\rangle , &{} |v_{11}^{2}\rangle , &{} |v_{11}^{3}\rangle \\ \end{array} \right) _{B_{1}}=\left( \begin{array}{cccc} |1\rangle , &{} |0\rangle , &{} |3\rangle , &{} |2\rangle \\ \end{array} \right) _{B_{1}}\mathcal {V}_{1}(\theta )^{T}, \end{aligned}$$
(23)
$$\begin{aligned} \left( \begin{array}{cccc} |v_{12}^{0}\rangle , &{} |v_{12}^{1}\rangle , &{} |v_{12}^{2}\rangle , &{} |v_{12}^{3}\rangle \\ \end{array} \right) _{B_{2}}=\left( \begin{array}{cccc} |1\rangle , &{} |0\rangle , &{} |3\rangle , &{} |2\rangle \\ \end{array} \right) _{B_{2}}\mathcal {V}_{2}(\theta )^{T}. \end{aligned}$$
(24)

Case 2.2 The measurement result of \(A_{1}\) and \(A_{2}\) is \((2,2)\) or \((8,8)\). Then, \(B_{1}\) and \(B_{2}\) will make projective measurements under the following basis

$$\begin{aligned} \left( \begin{array}{cccc} |v_{21}^{0}\rangle , &{} |v_{21}^{1}\rangle , &{} |v_{21}^{2}\rangle , &{} |v_{21}^{3}\rangle \\ \end{array} \right) _{B_{1}}=\left( \begin{array}{cccc} |2\rangle , &{} |3\rangle , &{} |0\rangle , &{} |1\rangle \\ \end{array} \right) _{B_{1}}\mathcal {V}_{1}(\theta )^{T}, \end{aligned}$$
(25)
$$\begin{aligned} \left( \begin{array}{cccc} |v_{22}^{0}\rangle , &{} |v_{22}^{1}\rangle , &{} |v_{22}^{2}\rangle , &{} |v_{22}^{3}\rangle \\ \end{array} \right) _{B_{2}}=\left( \begin{array}{cccc} |2\rangle , &{} |3\rangle , &{} |0\rangle , &{} |1\rangle \\ \end{array} \right) _{B_{2}}\mathcal {V}_{2}(\theta )^{T}. \end{aligned}$$
(26)

Case 2.3 The measurement result of \(A_{1}\) and \(A_{2}\) is \((3,3)\) or \((9,9)\). Then, \(B_{1}\) and \(B_{2}\) will make projective measurements under the following basis

$$\begin{aligned} \left( \begin{array}{cccc} |v_{31}^{0}\rangle , &{} |v_{31}^{1}\rangle , &{} |v_{31}^{2}\rangle , &{} |v_{31}^{3}\rangle \\ \end{array} \right) _{B_{1}}=\left( \begin{array}{cccc} |3\rangle , &{} |2\rangle , &{} |1\rangle , &{} |0\rangle \\ \end{array} \right) _{B_{1}}\mathcal {V}_{1}(\theta )^{T}, \end{aligned}$$
(27)
$$\begin{aligned} \left( \begin{array}{cccc} |v_{32}^{0}\rangle , &{} |v_{32}^{1}\rangle , &{} |v_{32}^{2}\rangle , &{} |v_{32}^{3}\rangle \\ \end{array} \right) _{B_{2}}=\left( \begin{array}{cccc} |3\rangle , &{} |2\rangle , &{} |1\rangle , &{} |0\rangle \\ \end{array} \right) _{B_{2}}\mathcal {V}_{2}(\theta )^{T}. \end{aligned}$$
(28)

Case 2.4 The measurement results of \(A_{1}\) and \(A_{2}\) is \((4,4)\) or \((14,14)\). Then, \(B_{1}\) and \(B_{2}\) will make projective measurements under the following basis

$$\begin{aligned} \left( \begin{array}{cccc} |v_{41}^{0}\rangle , &{} |v_{41}^{1}\rangle , &{} |v_{41}^{2}\rangle , &{} |v_{41}^{3}\rangle \\ \end{array} \right) _{B_{1}}=\left( \begin{array}{cccc} |1\rangle , &{} |2\rangle , &{} |3\rangle , &{} |0\rangle \\ \end{array} \right) _{B_{1}}\mathcal {V}_{1}(\theta )^{T}, \end{aligned}$$
(29)
$$\begin{aligned} \left( \begin{array}{cccc} |v_{42}^{0}\rangle , &{} |v_{42}^{1}\rangle , &{} |v_{42}^{2}\rangle , &{} |v_{42}^{3}\rangle \\ \end{array} \right) _{B_{2}}=\left( \begin{array}{cccc} |1\rangle , &{} |2\rangle , &{} |3\rangle , &{} |0\rangle \\ \end{array} \right) _{B_{2}}\mathcal {V}_{2}(\theta )^{T}. \end{aligned}$$
(30)

Case 2.5 The measurement results of \(A_{1}\) and \(A_{2}\) is \((5,5)\) or \((15,15)\). Then, \(B_{1}\) and \(B_{2}\) will make projective measurements under the following basis

$$\begin{aligned} \left( \begin{array}{cccc} |v_{51}^{0}\rangle , &{} |v_{51}^{1}\rangle , &{} |v_{51}^{2}\rangle , &{} |v_{51}^{3}\rangle \\ \end{array} \right) _{B_{1}}=\left( \begin{array}{cccc} |2\rangle , &{} |1\rangle , &{} |0\rangle , &{} |3\rangle \\ \end{array} \right) _{B_{1}}\mathcal {V}_{1}(\theta )^{T}, \end{aligned}$$
(31)
$$\begin{aligned} \left( \begin{array}{cccc} |v_{52}^{0}\rangle , &{} |v_{52}^{1}\rangle , &{} |v_{52}^{2}\rangle , &{} |v_{52}^{3}\rangle \\ \end{array} \right) _{B_{2}}=\left( \begin{array}{cccc} |2\rangle , &{} |1\rangle , &{} |0\rangle , &{} |3\rangle \\ \end{array} \right) _{B_{2}}\mathcal {V}_{2}(\theta )^{T}. \end{aligned}$$
(32)

Case 2.6 The measurement results of \(A_{1}\) and \(A_{2}\) is \((6,6)\) or \((12,12)\). Then, \(B_{1}\) and \(B_{2}\) will make projective measurements under the following basis

$$\begin{aligned} \left( \begin{array}{cccc} |v_{61}^{0}\rangle , &{} |v_{61}^{1}\rangle , &{} |v_{61}^{2}\rangle , &{} |v_{61}^{3}\rangle \\ \end{array} \right) _{B_{1}}=\left( \begin{array}{cccc} |3\rangle , &{} |0\rangle , &{} |1\rangle , &{} |2\rangle \\ \end{array} \right) _{B_{1}}\mathcal {V}_{1}(\theta )^{T}, \end{aligned}$$
(33)
$$\begin{aligned} \left( \begin{array}{cccc} |v_{62}^{0}\rangle , &{} |v_{62}^{1}\rangle , &{} |v_{62}^{2}\rangle , &{} |v_{62}^{3}\rangle \\ \end{array} \right) _{B_{2}}=\left( \begin{array}{cccc} |3\rangle , &{} |0\rangle , &{} |1\rangle , &{} |2\rangle \\ \end{array} \right) _{B_{2}}\mathcal {V}_{2}(\theta )^{T}. \end{aligned}$$
(34)

Case 2.7 The measurement results of \(A_{1}\) and \(A_{2}\) is \((7,7)\) or \((13,13)\). Then, \(B_{1}\) and \(B_{2}\) will make projective measurements under the following basis

$$\begin{aligned} \left( \begin{array}{cccc} |v_{71}^{0}\rangle , &{} |v_{71}^{1}\rangle , &{} |v_{71}^{2}\rangle , &{} |v_{71}^{3}\rangle \\ \end{array} \right) _{B_{1}}=\left( \begin{array}{cccc} |0\rangle , &{} |3\rangle , &{} |2\rangle , &{} |1\rangle \\ \end{array} \right) _{B_{1}}\mathcal {V}_{1}(\theta )^{T}, \end{aligned}$$
(35)
$$\begin{aligned} \left( \begin{array}{cccc} |v_{72}^{0}\rangle , &{} |v_{72}^{1}\rangle , &{} |v_{72}^{2}\rangle , &{} |v_{72}^{3}\rangle \\ \end{array} \right) _{B_{2}}=\left( \begin{array}{cccc} |0\rangle , &{} |3\rangle , &{} |2\rangle , &{} |1\rangle \\ \end{array} \right) _{B_{2}}\mathcal {V}_{2}(\theta )^{T}. \end{aligned}$$
(36)

Appendix 2

In Eq. (20), \(|\varPhi ^{0}\rangle \), \(\ldots \), \(|\varPhi ^{31}\rangle \) are in the following forms.

$$\begin{aligned} |\varPhi ^{0}\rangle&= a_{1}^{0}a_{2}^{0}(|0,0,0\rangle +|8,8,1\rangle ) +a_{1}^{1}a_{2}^{1}(|1,1,0\rangle +|9,9,1\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|2,2,2\rangle +|10,10,3\rangle ) +a_{1}^{3}a_{2}^{3}(|3,3,2\rangle +|11,11,3\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|4,4,4\rangle +|12,12,5\rangle ) +a_{1}^{5}a_{2}^{5}(|5,5,4\rangle +|13,13,5\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|6,6,6\rangle +|14,14,7\rangle ) +a_{1}^{7}a_{2}^{7}(|7,7,6\rangle +|15,15,7\rangle ), \end{aligned}$$
(37)
$$\begin{aligned} |\varPhi ^{1}\rangle&= a_{1}^{1}a_{2}^{1}(|0,0,0\rangle +|8,8,1\rangle ) +a_{1}^{0}a_{2}^{0}(|1,1,0\rangle +|9,9,1\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|2,2,2\rangle +|10,10,3\rangle ) +a_{1}^{2}a_{2}^{2}(|3,3,2\rangle +|11,11,3\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|4,4,4\rangle +|12,12,5\rangle ) +a_{1}^{4}a_{2}^{4}(|5,5,4\rangle +|13,13,5\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|6,6,6\rangle +|14,14,7\rangle ) +a_{1}^{6}a_{2}^{6}(|7,7,6\rangle +|15,15,7\rangle ), \end{aligned}$$
(38)
$$\begin{aligned} |\varPhi ^{2}\rangle&= a_{1}^{2}a_{2}^{2}(|0,0,0\rangle +|8,8,1\rangle ) +a_{1}^{3}a_{2}^{3}(|1,1,0\rangle +|9,9,1\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|2,2,2\rangle +|10,10,3\rangle ) +a_{1}^{1}a_{2}^{1}(|3,3,2\rangle +|11,11,3\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|4,4,4\rangle +|12,12,5\rangle ) +a_{1}^{7}a_{2}^{7}(|5,5,4\rangle +|13,13,5\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|6,6,6\rangle +|14,14,7\rangle ) +a_{1}^{5}a_{2}^{5}(|7,7,6\rangle +|15,15,7\rangle ), \end{aligned}$$
(39)
$$\begin{aligned} |\varPhi ^{3}\rangle&= a_{1}^{3}a_{2}^{3}(|0,0,0\rangle +|8,8,1\rangle ) +a_{1}^{2}a_{2}^{2}(|1,1,0\rangle +|9,9,1\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|2,2,2\rangle +|10,10,3\rangle ) +a_{1}^{0}a_{2}^{0}(|3,3,2\rangle +|11,11,3\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|4,4,4\rangle +|12,12,5\rangle ) +a_{1}^{6}a_{2}^{6}(|5,5,4\rangle +|13,13,5\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|6,6,6\rangle +|14,14,7\rangle ) +a_{1}^{4}a_{2}^{4}(|7,7,6\rangle +|15,15,7\rangle ), \end{aligned}$$
(40)
$$\begin{aligned} |\varPhi ^{4}\rangle&= a_{1}^{4}a_{2}^{4}(|0,0,0\rangle +|8,8,1\rangle ) +a_{1}^{5}a_{2}^{5}(|1,1,0\rangle +|9,9,1\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|2,2,2\rangle +|10,10,3\rangle ) +a_{1}^{7}a_{2}^{7}(|3,3,2\rangle +|11,11,3\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|4,4,4\rangle +|12,12,5\rangle ) +a_{1}^{1}a_{2}^{1}(|5,5,4\rangle +|13,13,5\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|6,6,6\rangle +|14,14,7\rangle ) +a_{1}^{3}a_{2}^{3}(|7,7,6\rangle +|15,15,7\rangle ), \end{aligned}$$
(41)
$$\begin{aligned} |\varPhi ^{5}\rangle&= a_{1}^{5}a_{2}^{5}(|0,0,0\rangle +|8,8,1\rangle ) +a_{1}^{4}a_{2}^{4}(|1,1,0\rangle +|9,9,1\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|2,2,2\rangle +|10,10,3\rangle ) +a_{1}^{6}a_{2}^{6}(|3,3,2\rangle +|11,11,3\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|4,4,4\rangle +|12,12,5\rangle ) +a_{1}^{0}a_{2}^{0}(|5,5,4\rangle +|13,13,5\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|6,6,6\rangle +|14,14,7\rangle ) +a_{1}^{2}a_{2}^{2}(|7,7,6\rangle +|15,15,7\rangle ), \end{aligned}$$
(42)
$$\begin{aligned} |\varPhi ^{6}\rangle&= a_{1}^{6}a_{2}^{6}(|0,0,0\rangle +|8,8,1\rangle ) +a_{1}^{7}a_{2}^{7}(|1,1,0\rangle +|9,9,1\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|2,2,2\rangle +|10,10,3\rangle ) +a_{1}^{5}a_{2}^{5}(|3,3,2\rangle +|11,11,3\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|4,4,4\rangle +|12,12,5\rangle ) +a_{1}^{3}a_{2}^{3}(|5,5,4\rangle +|13,13,5\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|6,6,6\rangle +|14,14,7\rangle ) +a_{1}^{1}a_{2}^{1}(|7,7,6\rangle +|15,15,7\rangle ), \end{aligned}$$
(43)
$$\begin{aligned} |\varPhi ^{7}\rangle&= a_{1}^{7}a_{2}^{7}(|0,0,0\rangle +|8,8,1\rangle ) +a_{1}^{6}a_{2}^{6}(|1,1,0\rangle +|9,9,1\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|2,2,2\rangle +|10,10,3\rangle ) +a_{1}^{4}a_{2}^{4}(|3,3,2\rangle +|11,11,3\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|4,4,4\rangle +|12,12,5\rangle ) +a_{1}^{2}a_{2}^{2}(|5,5,4\rangle +|13,13,5\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|6,6,6\rangle +|14,14,7\rangle ) +a_{1}^{0}a_{2}^{0}(|7,7,6\rangle +|15,15,7\rangle ), \end{aligned}$$
(44)
$$\begin{aligned} |\varPhi ^{8}\rangle&= a_{1}^{0}a_{2}^{0}(|2,2,0\rangle +|10,10,1\rangle ) +a_{1}^{1}a_{2}^{1}(|3,3,0\rangle +|11,11,1\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|0,0,2\rangle +|8,8,3\rangle ) +a_{1}^{3}a_{2}^{3}(|1,1,2\rangle +|9,9,3\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|6,6,4\rangle +|14,14,5\rangle ) +a_{1}^{5}a_{2}^{5}(|7,7,4\rangle +|15,15,5\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|4,4,6\rangle +|12,12,7\rangle ) +a_{1}^{7}a_{2}^{7}(|5,5,6\rangle +|13,13,7\rangle ), \end{aligned}$$
(45)
$$\begin{aligned} |\varPhi ^{9}\rangle&= a_{1}^{1}a_{2}^{1}(|2,2,0\rangle +|10,10,1\rangle ) +a_{1}^{0}a_{2}^{0}(|3,3,0\rangle +|11,11,1\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|0,0,2\rangle +|8,8,3\rangle ) +a_{1}^{2}a_{2}^{2}(|1,1,2\rangle +|9,9,3\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|6,6,4\rangle +|14,14,5\rangle ) +a_{1}^{4}a_{2}^{4}(|7,7,4\rangle +|15,15,5\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|4,4,6\rangle +|12,12,7\rangle ) +a_{1}^{6}a_{2}^{6}(|5,5,6\rangle +|13,13,7\rangle ), \end{aligned}$$
(46)
$$\begin{aligned} |\varPhi ^{10}\rangle&= a_{1}^{2}a_{2}^{2}(|2,2,0\rangle +|10,10,1\rangle ) +a_{1}^{3}a_{2}^{3}(|3,3,0\rangle +|11,11,1\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|0,0,2\rangle +|8,8,3\rangle ) +a_{1}^{1}a_{2}^{1}(|1,1,2\rangle +|9,9,3\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|6,6,4\rangle +|14,14,5\rangle ) +a_{1}^{7}a_{2}^{7}(|7,7,4\rangle +|15,15,5\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|4,4,6\rangle +|12,12,7\rangle ) +a_{1}^{5}a_{2}^{5}(|5,5,6\rangle +|13,13,7\rangle ), \end{aligned}$$
(47)
$$\begin{aligned} |\varPhi ^{11}\rangle&= a_{1}^{3}a_{2}^{3}(|2,2,0\rangle +|10,10,1\rangle ) +a_{1}^{2}a_{2}^{2}(|3,3,0\rangle +|11,11,1\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|0,0,2\rangle +|8,8,3\rangle ) +a_{1}^{0}a_{2}^{0}(|1,1,2\rangle +|9,9,3\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|6,6,4\rangle +|14,14,5\rangle ) +a_{1}^{6}a_{2}^{6}(|7,7,4\rangle +|15,15,5\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|4,4,6\rangle +|12,12,7\rangle ) +a_{1}^{4}a_{2}^{4}(|5,5,6\rangle +|13,13,7\rangle ), \end{aligned}$$
(48)
$$\begin{aligned} |\varPhi ^{12}\rangle&= a_{1}^{4}a_{2}^{4}(|2,2,0\rangle +|10,10,1\rangle ) +a_{1}^{5}a_{2}^{5}(|3,3,0\rangle +|11,11,1\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|0,0,2\rangle +|8,8,3\rangle ) +a_{1}^{7}a_{2}^{7}(|1,1,2\rangle +|9,9,3\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|6,6,4\rangle +|14,14,5\rangle ) +a_{1}^{1}a_{2}^{1}(|7,7,4\rangle +|15,15,5\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|4,4,6\rangle +|12,12,7\rangle ) +a_{1}^{3}a_{2}^{3}(|5,5,6\rangle +|13,13,7\rangle ), \end{aligned}$$
(49)
$$\begin{aligned} |\varPhi ^{13}\rangle&= a_{1}^{5}a_{2}^{5}(|2,2,0\rangle +|10,10,1\rangle ) +a_{1}^{4}a_{2}^{4}(|3,3,0\rangle +|11,11,1\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|0,0,2\rangle +|8,8,3\rangle ) +a_{1}^{6}a_{2}^{6}(|1,1,2\rangle +|9,9,3\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|6,6,4\rangle +|14,14,5\rangle ) +a_{1}^{0}a_{2}^{0}(|7,7,4\rangle +|15,15,5\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|4,4,6\rangle +|12,12,7\rangle ) +a_{1}^{2}a_{2}^{2}(|5,5,6\rangle +|13,13,7\rangle ), \end{aligned}$$
(50)
$$\begin{aligned} |\varPhi ^{14}\rangle&= a_{1}^{6}a_{2}^{6}(|2,2,0\rangle +|10,10,1\rangle ) +a_{1}^{7}a_{2}^{7}(|3,3,0\rangle +|11,11,1\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|0,0,2\rangle +|8,8,3\rangle ) +a_{1}^{5}a_{2}^{5}(|1,1,2\rangle +|9,9,3\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|6,6,4\rangle +|14,14,5\rangle ) +a_{1}^{3}a_{2}^{3}(|7,7,4\rangle +|15,15,5\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|4,4,6\rangle +|12,12,7\rangle ) +a_{1}^{1}a_{2}^{1}(|5,5,6\rangle +|13,13,7\rangle ), \end{aligned}$$
(51)
$$\begin{aligned} |\varPhi ^{15}\rangle&= a_{1}^{7}a_{2}^{7}(|2,2,0\rangle +|10,10,1\rangle ) +a_{1}^{6}a_{2}^{6}(|3,3,0\rangle +|11,11,1\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|0,0,2\rangle +|8,8,3\rangle ) +a_{1}^{4}a_{2}^{4}(|1,1,2\rangle +|9,9,3\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|6,6,4\rangle +|14,14,5\rangle ) +a_{1}^{2}a_{2}^{2}(|7,7,4\rangle +|15,15,5\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|4,4,6\rangle +|12,12,7\rangle ) +a_{1}^{0}a_{2}^{0}(|5,5,6\rangle +|13,13,7\rangle ), \end{aligned}$$
(52)
$$\begin{aligned} |\varPhi ^{16}\rangle&= a_{1}^{0}a_{2}^{0}(|4,4,0\rangle +|12,12,1\rangle ) +a_{1}^{1}a_{2}^{1}(|5,5,0\rangle +|13,13,1\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|6,6,2\rangle +|14,14,3\rangle ) +a_{1}^{3}a_{2}^{3}(|7,7,2\rangle +|15,15,3\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|0,0,4\rangle +|8,8,5\rangle ) +a_{1}^{5}a_{2}^{5}(|1,1,4\rangle +|9,9,5\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|2,2,6\rangle +|10,10,7\rangle ) +a_{1}^{7}a_{2}^{7}(|3,3,6\rangle +|11,11,7\rangle ), \end{aligned}$$
(53)
$$\begin{aligned} |\varPhi ^{17}\rangle&= a_{1}^{1}a_{2}^{1}(|4,4,0\rangle +|12,12,1\rangle ) +a_{1}^{0}a_{2}^{0}(|5,5,0\rangle +|13,13,1\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|6,6,2\rangle +|14,14,3\rangle ) +a_{1}^{2}a_{2}^{2}(|7,7,2\rangle +|15,15,3\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|0,0,4\rangle +|8,8,5\rangle ) +a_{1}^{4}a_{2}^{4}(|1,1,4\rangle +|9,9,5\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|2,2,6\rangle +|10,10,7\rangle ) +a_{1}^{6}a_{2}^{6}(|3,3,6\rangle +|11,11,7\rangle ), \end{aligned}$$
(54)
$$\begin{aligned} |\varPhi ^{18}\rangle&= a_{1}^{2}a_{2}^{2}(|4,4,0\rangle +|12,12,1\rangle ) +a_{1}^{3}a_{2}^{3}(|5,5,0\rangle +|13,13,1\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|6,6,2\rangle +|14,14,3\rangle ) +a_{1}^{1}a_{2}^{1}(|7,7,2\rangle +|15,15,3\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|0,0,4\rangle +|8,8,5\rangle ) +a_{1}^{7}a_{2}^{7}(|1,1,4\rangle +|9,9,5\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|2,2,6\rangle +|10,10,7\rangle ) +a_{1}^{5}a_{2}^{5}(|3,3,6\rangle +|11,11,7\rangle ), \end{aligned}$$
(55)
$$\begin{aligned} |\varPhi ^{19}\rangle&= a_{1}^{3}a_{2}^{3}(|4,4,0\rangle +|12,12,1\rangle ) +a_{1}^{2}a_{2}^{2}(|5,5,0\rangle +|13,13,1\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|6,6,2\rangle +|14,14,3\rangle ) +a_{1}^{0}a_{2}^{0}(|7,7,2\rangle +|15,15,3\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|0,0,4\rangle +|8,8,5\rangle ) +a_{1}^{6}a_{2}^{6}(|1,1,4\rangle +|9,9,5\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|2,2,6\rangle +|10,10,7\rangle ) +a_{1}^{4}a_{2}^{4}(|3,3,6\rangle +|11,11,7\rangle ), \end{aligned}$$
(56)
$$\begin{aligned} |\varPhi ^{20}\rangle&= a_{1}^{4}a_{2}^{4}(|4,4,0\rangle +|12,12,1\rangle ) +a_{1}^{5}a_{2}^{5}(|5,5,0\rangle +|13,13,1\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|6,6,2\rangle +|14,14,3\rangle ) +a_{1}^{7}a_{2}^{7}(|7,7,2\rangle +|15,15,3\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|0,0,4\rangle +|8,8,5\rangle ) +a_{1}^{1}a_{2}^{1}(|1,1,4\rangle +|9,9,5\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|2,2,6\rangle +|10,10,7\rangle ) +a_{1}^{3}a_{2}^{3}(|3,3,6\rangle +|11,11,7\rangle ), \end{aligned}$$
(57)
$$\begin{aligned} |\varPhi ^{21}\rangle&= a_{1}^{5}a_{2}^{5}(|4,4,0\rangle +|12,12,1\rangle ) +a_{1}^{4}a_{2}^{4}(|5,5,0\rangle +|13,13,1\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|6,6,2\rangle +|14,14,3\rangle ) +a_{1}^{6}a_{2}^{6}(|7,7,2\rangle +|15,15,3\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|0,0,4\rangle +|8,8,5\rangle ) +a_{1}^{0}a_{2}^{0}(|1,1,4\rangle +|9,9,5\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|2,2,6\rangle +|10,10,7\rangle ) +a_{1}^{2}a_{2}^{2}(|3,3,6\rangle +|11,11,7\rangle ), \end{aligned}$$
(58)
$$\begin{aligned} |\varPhi ^{22}\rangle&= a_{1}^{6}a_{2}^{6}(|4,4,0\rangle +|12,12,1\rangle ) +a_{1}^{7}a_{2}^{7}(|5,5,0\rangle +|13,13,1\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|6,6,2\rangle +|14,14,3\rangle ) +a_{1}^{5}a_{2}^{5}(|7,7,2\rangle +|15,15,3\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|0,0,4\rangle +|8,8,5\rangle ) +a_{1}^{3}a_{2}^{3}(|1,1,4\rangle +|9,9,5\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|2,2,6\rangle +|10,10,7\rangle ) +a_{1}^{1}a_{2}^{1}(|3,3,6\rangle +|11,11,7\rangle ), \end{aligned}$$
(59)
$$\begin{aligned} |\varPhi ^{23}\rangle&= a_{1}^{7}a_{2}^{7}(|4,4,0\rangle +|12,12,1\rangle ) +a_{1}^{6}a_{2}^{6}(|5,5,0\rangle +|13,13,1\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|6,6,2\rangle +|14,14,3\rangle ) +a_{1}^{4}a_{2}^{4}(|7,7,2\rangle +|15,15,3\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|0,0,4\rangle +|8,8,5\rangle ) +a_{1}^{2}a_{2}^{2}(|1,1,4\rangle +|9,9,5\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|2,2,6\rangle +|10,10,7\rangle ) +a_{1}^{0}a_{2}^{0}(|3,3,6\rangle +|11,11,7\rangle ), \end{aligned}$$
(60)
$$\begin{aligned} |\varPhi ^{24}\rangle&= a_{1}^{0}a_{2}^{0}(|6,6,0\rangle +|14,14,1\rangle ) +a_{1}^{1}a_{2}^{1}(|7,7,0\rangle +|15,15,1\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|4,4,2\rangle +|12,12,3\rangle ) +a_{1}^{3}a_{2}^{3}(|5,5,2\rangle +|13,13,3\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|2,2,4\rangle +|10,10,5\rangle ) +a_{1}^{5}a_{2}^{5}(|3,3,4\rangle +|11,11,5\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|0,0,6\rangle +|8,8,7\rangle ) +a_{1}^{7}a_{2}^{7}(|1,1,6\rangle +|9,9,7\rangle ), \end{aligned}$$
(61)
$$\begin{aligned} |\varPhi ^{25}\rangle&= a_{1}^{1}a_{2}^{1}(|6,6,0\rangle +|14,14,1\rangle ) +a_{1}^{0}a_{2}^{0}(|7,7,0\rangle +|15,15,1\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|4,4,2\rangle +|12,12,3\rangle ) +a_{1}^{2}a_{2}^{2}(|5,5,2\rangle +|13,13,3\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|2,2,4\rangle +|10,10,5\rangle ) +a_{1}^{4}a_{2}^{4}(|3,3,4\rangle +|11,11,5\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|0,0,6\rangle +|8,8,7\rangle ) +a_{1}^{6}a_{2}^{6}(|1,1,6\rangle +|9,9,7\rangle ), \end{aligned}$$
(62)
$$\begin{aligned} |\varPhi ^{26}\rangle&= a_{1}^{2}a_{2}^{2}(|6,6,0\rangle +|14,14,1\rangle ) +a_{1}^{3}a_{2}^{3}(|7,7,0\rangle +|15,15,1\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|4,4,2\rangle +|12,12,3\rangle ) +a_{1}^{1}a_{2}^{1}(|5,5,2\rangle +|13,13,3\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|2,2,4\rangle +|10,10,5\rangle ) +a_{1}^{7}a_{2}^{7}(|3,3,4\rangle +|11,11,5\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|0,0,6\rangle +|8,8,7\rangle ) +a_{1}^{5}a_{2}^{5}(|1,1,6\rangle +|9,9,7\rangle ), \end{aligned}$$
(63)
$$\begin{aligned} |\varPhi ^{27}\rangle&= a_{1}^{3}a_{2}^{3}(|6,6,0\rangle +|14,14,1\rangle ) +a_{1}^{2}a_{2}^{2}(|7,7,0\rangle +|15,15,1\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|4,4,2\rangle +|12,12,3\rangle ) +a_{1}^{0}a_{2}^{0}(|5,5,2\rangle +|13,13,3\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|2,2,4\rangle +|10,10,5\rangle ) +a_{1}^{6}a_{2}^{6}(|3,3,4\rangle +|11,11,5\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|0,0,6\rangle +|8,8,7\rangle ) +a_{1}^{4}a_{2}^{4}(|1,1,6\rangle +|9,9,7\rangle ), \end{aligned}$$
(64)
$$\begin{aligned} |\varPhi ^{28}\rangle&= a_{1}^{4}a_{2}^{4}(|6,6,0\rangle +|14,14,1\rangle ) +a_{1}^{5}a_{2}^{5}(|7,7,0\rangle +|15,15,1\rangle ) \nonumber \\&+\,a_{1}^{6}a_{2}^{6}(|4,4,2\rangle +|12,12,3\rangle ) +a_{1}^{7}a_{2}^{7}(|5,5,2\rangle +|13,13,3\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|2,2,4\rangle +|10,10,5\rangle ) +a_{1}^{1}a_{2}^{1}(|3,3,4\rangle +|11,11,5\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|0,0,6\rangle +|8,8,7\rangle ) +a_{1}^{3}a_{2}^{3}(|1,1,6\rangle +|9,9,7\rangle ), \end{aligned}$$
(65)
$$\begin{aligned} |\varPhi ^{29}\rangle&= a_{1}^{5}a_{2}^{5}(|6,6,0\rangle +|14,14,1\rangle ) +a_{1}^{4}a_{2}^{4}(|7,7,0\rangle +|15,15,1\rangle ) \nonumber \\&+\,a_{1}^{7}a_{2}^{7}(|4,4,2\rangle +|12,12,3\rangle ) +a_{1}^{6}a_{2}^{6}(|5,5,2\rangle +|13,13,3\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|2,2,4\rangle +|10,10,5\rangle ) +a_{1}^{0}a_{2}^{0}(|3,3,4\rangle +|11,11,5\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|0,0,6\rangle +|8,8,7\rangle ) +a_{1}^{2}a_{2}^{2}(|1,1,6\rangle +|9,9,7\rangle ), \end{aligned}$$
(66)
$$\begin{aligned} |\varPhi ^{30}\rangle&= a_{1}^{6}a_{2}^{6}(|6,6,0\rangle +|14,14,1\rangle ) +a_{1}^{7}a_{2}^{7}(|7,7,0\rangle +|15,15,1\rangle ) \nonumber \\&+\,a_{1}^{4}a_{2}^{4}(|4,4,2\rangle +|12,12,3\rangle ) +a_{1}^{5}a_{2}^{5}(|5,5,2\rangle +|13,13,3\rangle ) \nonumber \\&+\,a_{1}^{2}a_{2}^{2}(|2,2,4\rangle +|10,10,5\rangle ) +a_{1}^{3}a_{2}^{3}(|3,3,4\rangle +|11,11,5\rangle ) \nonumber \\&+\,a_{1}^{0}a_{2}^{0}(|0,0,6\rangle +|8,8,7\rangle ) +a_{1}^{1}a_{2}^{1}(|1,1,6\rangle +|9,9,7\rangle ), \end{aligned}$$
(67)
$$\begin{aligned} |\varPhi ^{31}\rangle&= a_{1}^{7}a_{2}^{7}(|6,6,0\rangle +|14,14,1\rangle ) +a_{1}^{6}a_{2}^{6}(|7,7,0\rangle +|15,15,1\rangle ) \nonumber \\&+\,a_{1}^{5}a_{2}^{5}(|4,4,2\rangle +|12,12,3\rangle ) +a_{1}^{4}a_{2}^{4}(|5,5,2\rangle +|13,13,3\rangle ) \nonumber \\&+\,a_{1}^{3}a_{2}^{3}(|2,2,4\rangle +|10,10,5\rangle ) +a_{1}^{2}a_{2}^{2}(|3,3,4\rangle +|11,11,5\rangle ) \nonumber \\&+\,a_{1}^{1}a_{2}^{1}(|0,0,6\rangle +|8,8,7\rangle ) +a_{1}^{0}a_{2}^{0}(|1,1,6\rangle +|9,9,7\rangle ). \end{aligned}$$
(68)

The remained 7 cases for \(B_{1}\) and \(B_{2}\) to make proper measurements in Two-to-Three JRSP are listed from Case 3.1 to Case 3.7.

Case 3.1 The measurement outcomes of \(A_{1}\) and \(A_{2}\) are \((1,1)\), \((11,11)\), \((21,21)\) and \((31,31)\). The measurement basis performed by \(B_{i}, i=1,2\) is

$$\begin{aligned} \left( \begin{array}{c} |v_{1i}^{0}\rangle \\ |v_{1i}^{1}\rangle \\ \vdots \\ |v_{1i}^{15}\rangle \\ \end{array} \right) =\left( \begin{array}{cc} V_{i1}^{\dagger }(\theta ) &{} V_{i2}^{\dagger }(\theta ) \\ V_{i2}^{\dagger }(\theta ) &{} V_{i1}^{\dagger }(\theta ) \\ \end{array} \right) \left( \begin{array}{c} |1 \rangle \\ |0 \rangle \\ \vdots \\ |14 \rangle \\ \end{array} \right) . \end{aligned}$$
(69)

Case 3.2 The measurement outcomes of \(A_{1}\) and \(A_{2}\) are \((2,2)\), \((8,8)\), \((22,22)\) and \((28,28)\). The measurement basis performed by \(B_{i}, i=1,2\) is

$$\begin{aligned} \left( \begin{array}{c} |v_{2i}^{0}\rangle \\ |v_{2i}^{1}\rangle \\ \vdots \\ |v_{2i}^{15}\rangle \\ \end{array} \right) =\left( \begin{array}{cc} V_{i1}^{\dagger }(\theta ) &{} V_{i2}^{\dagger }(\theta ) \\ V_{i2}^{\dagger }(\theta ) &{} V_{i1}^{\dagger }(\theta ) \\ \end{array} \right) \left( \begin{array}{c} |2 \rangle \\ |3 \rangle \\ \vdots \\ |13 \rangle \\ \end{array} \right) . \end{aligned}$$
(70)

Case 3.3 The measurement outcomes of \(A_{1}\) and \(A_{2}\) are \((3,3)\), \((9,9)\), \((23,23)\) and \((29,29)\). The measurement basis performed by \(B_{i}, i=1,2\) is

$$\begin{aligned} \left( \begin{array}{c} |v_{3i}^{0}\rangle \\ |v_{3i}^{1}\rangle \\ \vdots \\ |v_{3i}^{15}\rangle \\ \end{array} \right) =\left( \begin{array}{cc} V_{i1}^{\dagger }(\theta ) &{} V_{i2}^{\dagger }(\theta ) \\ V_{i2}^{\dagger }(\theta ) &{} V_{i1}^{\dagger }(\theta ) \\ \end{array} \right) \left( \begin{array}{c} |3 \rangle \\ |2 \rangle \\ \vdots \\ |12 \rangle \\ \end{array} \right) . \end{aligned}$$
(71)

Case 3.4 The measurement outcomes of \(A_{1}\) and \(A_{2}\) are \((4,4)\), \((14,14)\), \((16,16)\) and \((26,26)\). The measurement basis performed by \(B_{i}, i=1,2\) is

$$\begin{aligned} \left( \begin{array}{c} |v_{4i}^{0}\rangle \\ |v_{4i}^{1}\rangle \\ \vdots \\ |v_{4i}^{15}\rangle \\ \end{array} \right) =\left( \begin{array}{cc} V_{i1}^{\dagger }(\theta ) &{} V_{i2}^{\dagger }(\theta ) \\ V_{i2}^{\dagger }(\theta ) &{} V_{i1}^{\dagger }(\theta ) \\ \end{array} \right) \left( \begin{array}{c} |4 \rangle \\ |5 \rangle \\ \vdots \\ |11 \rangle \\ \end{array} \right) . \end{aligned}$$
(72)

Case 3.5 The measurement outcomes of \(A_{1}\) and \(A_{2}\) are \((5,5)\), \((15,15)\), \((17,17)\) and \((27,27)\). The measurement basis performed by \(B_{i}, i=1,2\) is

$$\begin{aligned} \left( \begin{array}{c} |v_{5i}^{0}\rangle \\ |v_{5i}^{1}\rangle \\ \vdots \\ |v_{5i}^{15}\rangle \\ \end{array} \right) =\left( \begin{array}{cc} V_{i1}^{\dagger }(\theta ) &{} V_{i2}^{\dagger }(\theta ) \\ V_{i2}^{\dagger }(\theta ) &{} V_{i1}^{\dagger }(\theta ) \\ \end{array} \right) \left( \begin{array}{c} |5 \rangle \\ |4 \rangle \\ \vdots \\ |10 \rangle \\ \end{array} \right) . \end{aligned}$$
(73)

Case 3.6 The measurement outcomes of \(A_{1}\) and \(A_{2}\) are \((6,6)\), \((12,12)\), \((18,18)\) and \((24,24)\). The measurement basis performed by \(B_{i}, i=1,2\) is

$$\begin{aligned} \left( \begin{array}{c} |v_{6i}^{0}\rangle \\ |v_{6i}^{1}\rangle \\ \vdots \\ |v_{6i}^{15}\rangle \\ \end{array} \right) =\left( \begin{array}{cc} V_{i1}^{\dagger }(\theta ) &{} V_{i2}^{\dagger }(\theta ) \\ V_{i2}^{\dagger }(\theta ) &{} V_{i1}^{\dagger }(\theta ) \\ \end{array} \right) \left( \begin{array}{c} |6 \rangle \\ |7 \rangle \\ \vdots \\ |9 \rangle \\ \end{array} \right) . \end{aligned}$$
(74)

Case 3.7 The measurement outcomes of \(A_{1}\) and \(A_{2}\) are \((7,7)\), \((13,13)\), \((19,19)\) and \((25,25)\). The measurement basis performed by \(B_{i}, i=1,2\) is

$$\begin{aligned} \left( \begin{array}{c} |v_{7i}^{0}\rangle \\ |v_{7i}^{1}\rangle \\ \vdots \\ |v_{7i}^{15}\rangle \\ \end{array} \right) =\left( \begin{array}{cc} V_{i1}^{\dagger }(\theta ) &{} V_{i2}^{\dagger }(\theta ) \\ V_{i2}^{\dagger }(\theta ) &{} V_{i1}^{\dagger }(\theta ) \\ \end{array} \right) \left( \begin{array}{c} |7 \rangle \\ |6 \rangle \\ \vdots \\ |8 \rangle \\ \end{array} \right) . \end{aligned}$$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZH., Shu, L., Mo, ZW. et al. Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf Process 13, 1979–2005 (2014). https://doi.org/10.1007/s11128-014-0790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0790-2

Keywords

Navigation