Quantum Information Processing

, Volume 13, Issue 8, pp 1893–1905 | Cite as

Estimations of phonon-induced decoherence in silicon–germanium triple quantum dots

  • Alexander Yu. Vasiliev
  • Leonid FedichkinEmail author


The decoherence and dephasing rate of charge qubits in systems based on double and triple SiGe quantum dots are studied. At the short time limit, electron–phonon interaction causes an incomplete decay of the off-diagonal density matrix elements. Long-time relaxation decay dominates over dephasing at large times. The triple quantum dot system with the same interdot distance demonstrates lower relaxation rate in the wide range of parameters.


Quantum computation Nanotechnology Quantum dots  Phonons Charge qubit Decoherence 


  1. 1.
    Shi, Z., Simmons, C., Ward, D., Prance, J., Koh, T.S., Gamble, J.K., Wu, X., Savage, D., Lagally, M., Friesen, M.: ArXiv preprint (2012). arXiv:1208.0519
  2. 2.
    Busl, M., Granger, G., Gaudreau, L., Sánchez, R., Kam, A., Pioro-Ladrière, M., Studenikin, S., Zawadzki, P., Wasilewski, Z., Sachrajda, A.: Bipolar spin blockade and coherent state superpositions in a triple quantum dot. Nat. Nanotechnol. 8, 261–265 (2013)CrossRefADSGoogle Scholar
  3. 3.
    Mehl, S., DiVincenzo, D.P.: Noise analysis of qubits implemented in triple quantum dot systems in a Davies master equation approach. Phys. Rev. B 87, 195309 (2013)CrossRefADSGoogle Scholar
  4. 4.
    Thalakulam, M., Simmons, C., Rosemeyer, B., Savage, D., Lagally, M., Friesen, M., Coppersmith, S., Eriksson, M.: Fast tunnel rates in Si/SiGe one-electron single and double quantum dots. Appl. Phys. Lett. 96, 183104–183104 (2010)CrossRefADSGoogle Scholar
  5. 5.
    Fischetti, M., Laux, S.: Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996)CrossRefADSGoogle Scholar
  6. 6.
    Friesen, M., Chutia, S., Tahan, C., Coppersmith, S.: Valley splitting theory of Si Ge/ Si/ Si Ge quantum wells. Phys. Rev. B 75, 115318 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Palma, G.M., Suominen, K.A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 452, 567–584 (1996)MathSciNetCrossRefADSzbMATHGoogle Scholar
  8. 8.
    Fedichkin, L., Fedorov, A.: Study of temperature dependence of electron–phonon relaxation and dephasing in semiconductor double-dot nanostructures. IEEE Trans. Nanotechnol. 4, 65–70 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Blum, K.: Density Matrix Theory and Applications. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Leggett, A.J., Chakravarty, S., Dorsey, A., Fisher, M.P., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987)CrossRefADSGoogle Scholar
  11. 11.
    Fedichkin, L., Fedorov, A., Privman, V.: Measures of Decoherence. In: Proc. SPIE 5105, Quantum Information and Computation, pp. 243–254 (2003)Google Scholar
  12. 12.
    Fedichkin, L., Fedorov, A., Privman, V.: Additivity of decoherence measures for multiqubit quantum systems. Phys. Lett. A 328, 87–93 (2004)MathSciNetCrossRefADSzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.NIXMoscowRussia
  2. 2.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  3. 3.Dept. of Theoretical PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations