Abstract
Quantum dot hybrid qubits formed from three electrons in double quantum dots represent a promising compromise between high speed and simple fabrication for solid state implementations of single-qubit and two-qubits quantum logic ports. We derive the Schrieffer–Wolff effective Hamiltonian that describes in a simple and intuitive way the qubit by combining a Hubbard-like model with a projector operator method. As a result, the Hubbard-like Hamiltonian is transformed in an equivalent expression in terms of the exchange coupling interactions between pairs of electrons. The effective Hamiltonian is exploited to derive the dynamical behavior of the system and its eigenstates on the Bloch sphere to generate qubits operation for quantum logic ports. A realistic implementation in silicon and the coupling of the qubit with a detector are discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shulman, M.D., Dial, O.E., Harvey, S.P., Bluhm, H., Umansky, V., Yacoby, A.: Demonstration of entanglement of electrostatically coupled singlet–triplet qubits. Science 336, 202–205 (2012)
Johnson, A.C., Petta, J.R., Taylor, J.M., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Triplet singlet spin relaxation via nuclei in a double quantum dot. Nature (London) 435, 925–928 (2005)
Koppens, F.H.L., Folk, J.A., Elzerman, J.M., Hanson, R., Vink, I.T., Tranitz, H.P., Wegscheider, W., Kouwenhoven, L.P., Vandersypen, L.M.K.: Control and detection of singlet–triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005)
Maune, B.M., Borselli, M.G., Huang, B., Ladd, T.D., Deelman, P.W., Holabird, K.S., Kiselev, A.A., Alvarado-Rodriguez, I., Ross, R.S., Schimitz, A.E., Sokolich, M., Watson, C.A., Gyure, M.F., Hunter, A.T.: Coherent singlet–triplet oscillations in a silicon-based double quantum dot. Nature (London) 481, 344–347 (2012)
Bluhm, H., Foletti, S., Neder, I., Rudner, M., Mahalu, D., Umansky, V., Yacoby, A.: Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 \(\upmu \text{ s }\). Nat. Phys. 7, 109–113 (2011)
Tyryshkin, A.M., Tojo, S., Morton, J.J.L., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.-J., Schenkel, T., Thewalt, M.L.W., Itoh, K.M., Lyon, S.A.: Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11, 143–147 (2012)
Li, R., Hu, X., You, J.Q.: Controllable exchange coupling between two singlet–triplet qubits. Phys. Rev. B 86, 205306 (2012)
Coish, W.A., Loss, D.: Singlet–triplet decoherence due to nuclear spins in a double quantum dot. Phys. Rev. B 72, 125337 (2005)
Shen, S.Q., Wang, Z.D.: Phase separation and charge ordering in doped manganite perovskites: projection perturbation and mean-field approaches. Phys. Rev. B 61, 9532–9541 (2000)
Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)
DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.: Universal quantum computation with the exchange interaction. Nature (London) 408, 339–342 (2000)
Taylor, J.M., Engel, H.-A., Dür, W., Yacoby, A., Marcus, C.M., Zoller, P., Lukin, M.D.: Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nat. Phys. 1, 177–183 (2005)
Levy, J.: Universal quantum computation with spin-1/2 pairs and heisenberg exchange. Phys. Rev. Lett. 89, 147902 (2002)
Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)
Kikkawa, J.M., Awschalom, D.D.: Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998)
Amasha, S., MacLean, K., Radu, I.P., Zumbühl, D.M., Kastner, M.A., Hanson, M.P., Gossard, A.C.: Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett. 100, 046803 (2008)
Koppens, F.H.L., Nowack, K.C., Vandersypen, L.M.K.: Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008)
Barthel, C., Medford, J., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Interlaced dynamical decoupling and coherent operation of a singlet–triplet qubit. Phys. Rev. Lett. 105, 266808 (2010)
Tyryshkin, A.M., Lyon, S.A., Astashkin, A.V., Raitsimring, A.M.: Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207 (2003)
Morello, A., Pla, J.J., Zwanenburg, F.A., Chan, K.W., Tan, K.Y., Huebl, H., Möttönen, M., Nugroho, C.D., Yang, C., van Donkelaar, J.A., Alves, A.D.C., Jamienson, D.N., Escott, C.C., Hollenberg, L.C.L., Clark, R.G., Dzurak, A.S.: Single-shot readout of an electron spin in silicon. Nature (London) 467, 687–691 (2010)
Simmons, C.B., Prance, J.R., Van Bael, B.J., Koh, T.S., Shi, Z., Savage, D.E., Lagally, M.G., Joynt, R., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: Tunable Spin loading and T1 of a silicon spin qubit measured by single-shot readout. Phys. Rev. Lett. 106, 156804 (2011)
Xiao, M., House, M.G., Jiang, H.W.: Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. Phys. Rev. Lett. 104, 096801 (2010)
van den Berg, J.W.G., Nadj-Perge, S., Pribiag, V.S., Plissard, S.R., Bakkers, E.P.A.M., Frolov, S.M., Kouwenhoven, L.P.: Fast spin–orbit qubit in an indium antimonide nanowire. Phys. Rev. Lett. 110, 066806 (2013)
Shi, Z., Simmons, C.B., Prance, J.R., Gamble, J.K., Koh, T.S., Shim, Y.-P., Hu, X., Savage, D.E., Lagally, M.G., Eriksson, M.A., Friesen, M., Coppersmith, S.N.: Fast hybrid silicon double-quantum-dot qubit. Phys. Rev. Lett. 108, 140503 (2012)
Petta, J.R., Lu, H., Gossard, A.C.: A coherent beam splitter for electronic spin states. Science 327, 669–672 (2010)
Ribeiro, H., Burkard, G., Petta, J.R., Lu, H., Gossard, A.C.: Coherent adiabatic spin control in the presence of charge noise using tailored pulses. Phys. Rev. Lett. 110, 086804 (2013)
Schrieffer, J.R., Wolff, P.A.: Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149, 491–492 (1966)
Jefferson, J.H., Häusler, W.: Effective charge-spin models for quantum dots. Phys. Rev. B 54, 4936–4947 (1996)
Burkard, G., Loss, D., DiVincenzo, D.P.: Effective charge-spin models for quantum dots. Phys. Rev. B 59, 2070–2078 (1999)
Hu, X., Das Sarma, S.: Hilbert-space structure of a solid-state quantum computer: two-electron states of a double-quantum-dot artificial molecule. Phys. Rev. A 61, 062301 (2000)
De Michielis, M., Prati, E., Fanciulli, M., Fiori, G., Iannaccone, G.: Geometrical effects on valley–orbital filling patterns in silicon quantum dots for robust qubit implementation. Appl. Phys. Exp. 5, 124001 (2012)
Medford, J., Beil, J., Taylor, J.M., Bartlett, S.D., Doherty, A.C., Rashba, E.I., DiVincenzo, D.P., Lu, H., Gossard, A.C., Marcus, C.M.: Self-consistent measurement and state tomography of an exchange-only spin qubit. Nat. Nanotechnol. 8, 654–659 (2013)
Friesen, M., Coppersmith, S.N.: Theory of valley–orbit coupling in a Si/SiGe quantum dot. Phys. Rev B 81, 115324 (2010)
Prati, E., De Michielis, M., Belli, M., Cocco, S., Fanciulli, M., Kotekar-Patil, D., Ruoff, M., Kern, D.P., Wharam, D.A., Verduijn, J., Tettamanzi, G.C., Rogge, S., Roche, B., Wacquez, R., Jehl, X., Vinet, M., Sanquer, M.: Few electron limit of n-type metal oxide semiconductor single electron transistors. Nanotechnology 23, 215204 (2012)
Wang, X., Yang, S., Das Sarma, S.: Quantum theory of the charge-stability diagram of semiconductor double-quantum-dot systems. Phys. Rev. B 84, 115301 (2011)
Koh, T.S., Gamble, J.K., Friesen, M., Eriksson, M.A., Coppersmith, S.N.: Pulse-gated quantum-dot hybrid qubit. Phys. Rev. Lett. 109, 250503 (2012)
Acknowledgments
This work is partially supported by the project QuDec, Italian Ministry of Defence.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: Energy levels
This appendix is devoted to the analysis of the energy levels of the hybrid qubit. The results obtained with the euristic Hamiltonian in Ref. [36] are recovered exploiting our effective Hamiltonian (14). For generality, we consider the basis with the intermediated state \(|E\rangle \equiv |\downarrow \rangle |S\rangle \) in addition to the logical basis (16) previously introduced. The state \(|E\rangle \) that has one electron in the left dot and two electrons in the right dot conserving the same total angular momentum \(S^2\) and \(S_z\) is directly involved in the physical process that leads to transitions between the two logical states. Explicit calculations of the matrix elements of the Hamiltonian in the basis \(\{|0\rangle ,|1\rangle ,|E\rangle \}\) give as a result
where the detuning \(\varepsilon \), proportional to the difference between the energy levels \(\varepsilon _3\) and \(\varepsilon _1\), is introduced.
Figure 6, in which the energy levels of the Hamiltonian (26) are represented, shows that transitions from logical state \(|0\rangle \) to \(|1\rangle \) can be induced by first pulsing the avoided crossing between \(|0\rangle \) and \(|E\rangle \) and then pulsing the avoided crossing between \(|E\rangle \) and \(|1\rangle \). The same argument can be applied to induce transition conversely from logical state \(|1\rangle \) to \(|0\rangle \).
Appendix 2: Dynamical evolution
Time-dependent Schrödinger equation for the hybrid qubit described by Hamiltonian (19) is here solved.
The state of the system at the initial time \(t=0\) is written as a normalized superposition of the states of the logical basis \(\{|0\rangle ,|1\rangle \}\) with probability amplitudes given by \(a(0)\) and \(b(0)\). The normalization condition \(|a(0)|^2+|b(0)|^2=1\) is satisfied. Due to the conservation of the total angular momentum operator, it follows that also at a generic time instant \(t\), the state of the system can be written analogously with probability amplitudes \(a(t)\) and \(b(t)\) depending explicitly on time
By inserting this expression into the time-dependent Schrödinger equation \(H|\psi (t)\rangle =i|\dot{\psi }(t)\rangle \) and by solving the system of two first order differential equations for the probability amplitudes \(a(t)\) and \(b(t)\), we finally obtain
where
and
Eq. (28) contains the more general form for the probability amplitudes at every time instant \(t\). Once that the initial condition is fixed it is possible to extract the values for the coefficients \(c_1\) and \(c_2\).
In the case of the specific initial condition analyzed in Sect. 2 in which the system is prepared in the state of the logical basis corresponding to \(|\psi (0)\rangle =|0\rangle \), the coefficients are
After straightforward calculations we get the probability amplitudes
Appendix 3: Eigenvalues and eigenvectors of three exchange-coupled spins in two limiting cases of interest
In this appendix eigenvectors and eigenvalues of the hybrid qubit, described by the effective Hamiltonian (14), are presented in two special cases. Two limiting conditions of interest from the practical point of view, are analyzed.
-
1.
Case \(J_2\gg J'\simeq J_1\) Under the condition on the exchange coupling \(J_2\gg J'\simeq J_1\), that means that two electron are confined in the right dot, eigenvectors and eigenvalues in Eqs. (23) and (24) become
$$\begin{aligned} |D_{+\frac{1}{2}}\rangle&= \frac{1}{\sqrt{6}}\left( |\uparrow \uparrow \downarrow \rangle +|\uparrow \downarrow \uparrow \rangle -2|\downarrow \uparrow \uparrow \rangle \right) \nonumber \\ |D_{-\frac{1}{2}}\rangle&= \frac{1}{\sqrt{6}}\left( |\downarrow \downarrow \uparrow \rangle +|\downarrow \uparrow \downarrow \rangle -2|\uparrow \downarrow \downarrow \rangle \right) \nonumber \\ |D'_{+\frac{1}{2}}\rangle&= \frac{1}{\sqrt{2}}\left( |\uparrow \uparrow \downarrow \rangle -|\uparrow \downarrow \uparrow \rangle \right) \nonumber \\ |D'_{-\frac{1}{2}}\rangle&= \frac{1}{\sqrt{2}}\left( |\downarrow \downarrow \uparrow \rangle -|\downarrow \uparrow \downarrow \rangle \right) \end{aligned}$$(33)$$\begin{aligned} E_{D_{S_z}}&= \frac{1}{4}J_2\;E_{D'_{S_z}}=-\frac{3}{4}J_2. \end{aligned}$$(34) -
2.
Case \(J'\gg J_2\simeq J_1\) On the other hand, the opposite condition corresponding to two electrons confined in the left dot, that is \(J'\gg J_2\simeq J_1\), gives as eigenvectors and eigenvalues
$$\begin{aligned} |\bar{D}_{+\frac{1}{2}}\rangle&= \frac{1}{\sqrt{6}}\left( |\downarrow \uparrow \uparrow \rangle +|\uparrow \downarrow \uparrow \rangle -2|\uparrow \uparrow \downarrow \rangle \right) \nonumber \\ |\bar{D}_{-\frac{1}{2}}\rangle&= \frac{1}{\sqrt{6}}\left( |\uparrow \downarrow \downarrow \rangle +|\downarrow \uparrow \downarrow \rangle -2|\downarrow \downarrow \uparrow \rangle \right) \nonumber \\ |\bar{D}'_{+\frac{1}{2}}\rangle&= \frac{1}{\sqrt{2}}\left( |\uparrow \downarrow \uparrow \rangle -|\downarrow \uparrow \uparrow \rangle \right) \nonumber \\ |\bar{D}'_{-\frac{1}{2}}\rangle&= \frac{1}{\sqrt{2}}\left( |\downarrow \uparrow \downarrow \rangle -|\uparrow \downarrow \downarrow \rangle \right) \end{aligned}$$(35)$$\begin{aligned} E_{\bar{D}_{S_z}}&= \frac{1}{4}J'\;E_{\bar{D}'_{S_z}}=-\frac{3}{4}J'. \end{aligned}$$(36)
Rights and permissions
About this article
Cite this article
Ferraro, E., De Michielis, M., Mazzeo, G. et al. Effective Hamiltonian for the hybrid double quantum dot qubit. Quantum Inf Process 13, 1155–1173 (2014). https://doi.org/10.1007/s11128-013-0718-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0718-2