Skip to main content
Log in

Effective Hamiltonian for the hybrid double quantum dot qubit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum dot hybrid qubits formed from three electrons in double quantum dots represent a promising compromise between high speed and simple fabrication for solid state implementations of single-qubit and two-qubits quantum logic ports. We derive the Schrieffer–Wolff effective Hamiltonian that describes in a simple and intuitive way the qubit by combining a Hubbard-like model with a projector operator method. As a result, the Hubbard-like Hamiltonian is transformed in an equivalent expression in terms of the exchange coupling interactions between pairs of electrons. The effective Hamiltonian is exploited to derive the dynamical behavior of the system and its eigenstates on the Bloch sphere to generate qubits operation for quantum logic ports. A realistic implementation in silicon and the coupling of the qubit with a detector are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shulman, M.D., Dial, O.E., Harvey, S.P., Bluhm, H., Umansky, V., Yacoby, A.: Demonstration of entanglement of electrostatically coupled singlet–triplet qubits. Science 336, 202–205 (2012)

    Article  ADS  Google Scholar 

  2. Johnson, A.C., Petta, J.R., Taylor, J.M., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Triplet singlet spin relaxation via nuclei in a double quantum dot. Nature (London) 435, 925–928 (2005)

    Article  ADS  Google Scholar 

  3. Koppens, F.H.L., Folk, J.A., Elzerman, J.M., Hanson, R., Vink, I.T., Tranitz, H.P., Wegscheider, W., Kouwenhoven, L.P., Vandersypen, L.M.K.: Control and detection of singlet–triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005)

    Article  ADS  Google Scholar 

  4. Maune, B.M., Borselli, M.G., Huang, B., Ladd, T.D., Deelman, P.W., Holabird, K.S., Kiselev, A.A., Alvarado-Rodriguez, I., Ross, R.S., Schimitz, A.E., Sokolich, M., Watson, C.A., Gyure, M.F., Hunter, A.T.: Coherent singlet–triplet oscillations in a silicon-based double quantum dot. Nature (London) 481, 344–347 (2012)

    Article  ADS  Google Scholar 

  5. Bluhm, H., Foletti, S., Neder, I., Rudner, M., Mahalu, D., Umansky, V., Yacoby, A.: Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 \(\upmu \text{ s }\). Nat. Phys. 7, 109–113 (2011)

    Article  Google Scholar 

  6. Tyryshkin, A.M., Tojo, S., Morton, J.J.L., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.-J., Schenkel, T., Thewalt, M.L.W., Itoh, K.M., Lyon, S.A.: Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11, 143–147 (2012)

    Article  ADS  Google Scholar 

  7. Li, R., Hu, X., You, J.Q.: Controllable exchange coupling between two singlet–triplet qubits. Phys. Rev. B 86, 205306 (2012)

    Article  ADS  Google Scholar 

  8. Coish, W.A., Loss, D.: Singlet–triplet decoherence due to nuclear spins in a double quantum dot. Phys. Rev. B 72, 125337 (2005)

    Article  ADS  Google Scholar 

  9. Shen, S.Q., Wang, Z.D.: Phase separation and charge ordering in doped manganite perovskites: projection perturbation and mean-field approaches. Phys. Rev. B 61, 9532–9541 (2000)

    Article  ADS  Google Scholar 

  10. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  11. DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.: Universal quantum computation with the exchange interaction. Nature (London) 408, 339–342 (2000)

    Article  ADS  Google Scholar 

  12. Taylor, J.M., Engel, H.-A., Dür, W., Yacoby, A., Marcus, C.M., Zoller, P., Lukin, M.D.: Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nat. Phys. 1, 177–183 (2005)

    Article  Google Scholar 

  13. Levy, J.: Universal quantum computation with spin-1/2 pairs and heisenberg exchange. Phys. Rev. Lett. 89, 147902 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    Article  ADS  Google Scholar 

  15. Kikkawa, J.M., Awschalom, D.D.: Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998)

    Article  ADS  Google Scholar 

  16. Amasha, S., MacLean, K., Radu, I.P., Zumbühl, D.M., Kastner, M.A., Hanson, M.P., Gossard, A.C.: Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett. 100, 046803 (2008)

    Article  ADS  Google Scholar 

  17. Koppens, F.H.L., Nowack, K.C., Vandersypen, L.M.K.: Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008)

    Article  ADS  Google Scholar 

  18. Barthel, C., Medford, J., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Interlaced dynamical decoupling and coherent operation of a singlet–triplet qubit. Phys. Rev. Lett. 105, 266808 (2010)

    Article  ADS  Google Scholar 

  19. Tyryshkin, A.M., Lyon, S.A., Astashkin, A.V., Raitsimring, A.M.: Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207 (2003)

    Article  ADS  Google Scholar 

  20. Morello, A., Pla, J.J., Zwanenburg, F.A., Chan, K.W., Tan, K.Y., Huebl, H., Möttönen, M., Nugroho, C.D., Yang, C., van Donkelaar, J.A., Alves, A.D.C., Jamienson, D.N., Escott, C.C., Hollenberg, L.C.L., Clark, R.G., Dzurak, A.S.: Single-shot readout of an electron spin in silicon. Nature (London) 467, 687–691 (2010)

    Article  ADS  Google Scholar 

  21. Simmons, C.B., Prance, J.R., Van Bael, B.J., Koh, T.S., Shi, Z., Savage, D.E., Lagally, M.G., Joynt, R., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: Tunable Spin loading and T1 of a silicon spin qubit measured by single-shot readout. Phys. Rev. Lett. 106, 156804 (2011)

    Article  ADS  Google Scholar 

  22. Xiao, M., House, M.G., Jiang, H.W.: Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. Phys. Rev. Lett. 104, 096801 (2010)

    Article  ADS  Google Scholar 

  23. van den Berg, J.W.G., Nadj-Perge, S., Pribiag, V.S., Plissard, S.R., Bakkers, E.P.A.M., Frolov, S.M., Kouwenhoven, L.P.: Fast spin–orbit qubit in an indium antimonide nanowire. Phys. Rev. Lett. 110, 066806 (2013)

    Article  ADS  Google Scholar 

  24. Shi, Z., Simmons, C.B., Prance, J.R., Gamble, J.K., Koh, T.S., Shim, Y.-P., Hu, X., Savage, D.E., Lagally, M.G., Eriksson, M.A., Friesen, M., Coppersmith, S.N.: Fast hybrid silicon double-quantum-dot qubit. Phys. Rev. Lett. 108, 140503 (2012)

    Article  ADS  Google Scholar 

  25. Petta, J.R., Lu, H., Gossard, A.C.: A coherent beam splitter for electronic spin states. Science 327, 669–672 (2010)

    Article  ADS  Google Scholar 

  26. Ribeiro, H., Burkard, G., Petta, J.R., Lu, H., Gossard, A.C.: Coherent adiabatic spin control in the presence of charge noise using tailored pulses. Phys. Rev. Lett. 110, 086804 (2013)

    Article  ADS  Google Scholar 

  27. Schrieffer, J.R., Wolff, P.A.: Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149, 491–492 (1966)

    Article  ADS  Google Scholar 

  28. Jefferson, J.H., Häusler, W.: Effective charge-spin models for quantum dots. Phys. Rev. B 54, 4936–4947 (1996)

    Article  ADS  Google Scholar 

  29. Burkard, G., Loss, D., DiVincenzo, D.P.: Effective charge-spin models for quantum dots. Phys. Rev. B 59, 2070–2078 (1999)

    Article  ADS  Google Scholar 

  30. Hu, X., Das Sarma, S.: Hilbert-space structure of a solid-state quantum computer: two-electron states of a double-quantum-dot artificial molecule. Phys. Rev. A 61, 062301 (2000)

    Article  ADS  Google Scholar 

  31. De Michielis, M., Prati, E., Fanciulli, M., Fiori, G., Iannaccone, G.: Geometrical effects on valley–orbital filling patterns in silicon quantum dots for robust qubit implementation. Appl. Phys. Exp. 5, 124001 (2012)

    Article  ADS  Google Scholar 

  32. Medford, J., Beil, J., Taylor, J.M., Bartlett, S.D., Doherty, A.C., Rashba, E.I., DiVincenzo, D.P., Lu, H., Gossard, A.C., Marcus, C.M.: Self-consistent measurement and state tomography of an exchange-only spin qubit. Nat. Nanotechnol. 8, 654–659 (2013)

    Article  ADS  Google Scholar 

  33. Friesen, M., Coppersmith, S.N.: Theory of valley–orbit coupling in a Si/SiGe quantum dot. Phys. Rev B 81, 115324 (2010)

    Article  ADS  Google Scholar 

  34. Prati, E., De Michielis, M., Belli, M., Cocco, S., Fanciulli, M., Kotekar-Patil, D., Ruoff, M., Kern, D.P., Wharam, D.A., Verduijn, J., Tettamanzi, G.C., Rogge, S., Roche, B., Wacquez, R., Jehl, X., Vinet, M., Sanquer, M.: Few electron limit of n-type metal oxide semiconductor single electron transistors. Nanotechnology 23, 215204 (2012)

    Article  ADS  Google Scholar 

  35. Wang, X., Yang, S., Das Sarma, S.: Quantum theory of the charge-stability diagram of semiconductor double-quantum-dot systems. Phys. Rev. B 84, 115301 (2011)

    Article  ADS  Google Scholar 

  36. Koh, T.S., Gamble, J.K., Friesen, M., Eriksson, M.A., Coppersmith, S.N.: Pulse-gated quantum-dot hybrid qubit. Phys. Rev. Lett. 109, 250503 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the project QuDec, Italian Ministry of Defence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ferraro.

Appendices

Appendix 1: Energy levels

This appendix is devoted to the analysis of the energy levels of the hybrid qubit. The results obtained with the euristic Hamiltonian in Ref. [36] are recovered exploiting our effective Hamiltonian (14). For generality, we consider the basis with the intermediated state \(|E\rangle \equiv |\downarrow \rangle |S\rangle \) in addition to the logical basis (16) previously introduced. The state \(|E\rangle \) that has one electron in the left dot and two electrons in the right dot conserving the same total angular momentum \(S^2\) and \(S_z\) is directly involved in the physical process that leads to transitions between the two logical states. Explicit calculations of the matrix elements of the Hamiltonian in the basis \(\{|0\rangle ,|1\rangle ,|E\rangle \}\) give as a result

$$\begin{aligned} H= \left( \begin{array}{lll} -\frac{3}{4}J' &{} -\frac{\sqrt{3}}{4}(J_1-J_2) &{} \frac{3}{8}(J_2-J_1+J')\\ -\frac{\sqrt{3}}{4}(J_1-J_2) &{} \frac{1}{4}J'-\frac{1}{2}(J_1+J_2) &{} -\frac{\sqrt{3}}{8}(J_1+3J_2-J')\\ \frac{3}{8}(J_2-J_1+J') &{} -\frac{\sqrt{3}}{8}(J_1+3J_2-J') &{} -\frac{3}{4}J_2-\varepsilon \end{array}\right) , \end{aligned}$$
(26)

where the detuning \(\varepsilon \), proportional to the difference between the energy levels \(\varepsilon _3\) and \(\varepsilon _1\), is introduced.

Figure 6, in which the energy levels of the Hamiltonian (26) are represented, shows that transitions from logical state \(|0\rangle \) to \(|1\rangle \) can be induced by first pulsing the avoided crossing between \(|0\rangle \) and \(|E\rangle \) and then pulsing the avoided crossing between \(|E\rangle \) and \(|1\rangle \). The same argument can be applied to induce transition conversely from logical state \(|1\rangle \) to \(|0\rangle \).

Fig. 6
figure 6

Energy levels of the Hamiltonian (14) as a function of detuning \(\varepsilon \) between the two dots

Appendix 2: Dynamical evolution

Time-dependent Schrödinger equation for the hybrid qubit described by Hamiltonian (19) is here solved.

The state of the system at the initial time \(t=0\) is written as a normalized superposition of the states of the logical basis \(\{|0\rangle ,|1\rangle \}\) with probability amplitudes given by \(a(0)\) and \(b(0)\). The normalization condition \(|a(0)|^2+|b(0)|^2=1\) is satisfied. Due to the conservation of the total angular momentum operator, it follows that also at a generic time instant \(t\), the state of the system can be written analogously with probability amplitudes \(a(t)\) and \(b(t)\) depending explicitly on time

$$\begin{aligned} |\psi (0)\rangle =a(0)|0\rangle +b(0)|1\rangle \quad \Rightarrow |\psi (t)\rangle =a(t)|0\rangle +b(t)|1\rangle . \end{aligned}$$
(27)

By inserting this expression into the time-dependent Schrödinger equation \(H|\psi (t)\rangle =i|\dot{\psi }(t)\rangle \) and by solving the system of two first order differential equations for the probability amplitudes \(a(t)\) and \(b(t)\), we finally obtain

$$\begin{aligned} \left\{ \begin{array}{ll} a(t)=c_1e^{\lambda _1t}+c_2e^{\lambda _2t}\\ b(t)=c_1\frac{\lambda _1-iA}{iC}e^{\lambda _1t} +c_2\frac{\lambda _2-iA}{iC}e^{\lambda _2t},\\ \end{array} \right. \end{aligned}$$
(28)

where

$$\begin{aligned} \lambda _{1,2}=i(\alpha \mp \beta ), \quad \alpha =\frac{A+B}{2},\quad \beta =\frac{\sqrt{(A-B)^2+4C^2}}{2} \end{aligned}$$
(29)

and

$$\begin{aligned} A=\frac{3}{4}J', \quad B=\frac{\sqrt{3}}{4}(J_1-J_2), \quad C=-\frac{1}{4}J'+\frac{1}{2}(J_1+J_2). \end{aligned}$$
(30)

Eq. (28) contains the more general form for the probability amplitudes at every time instant \(t\). Once that the initial condition is fixed it is possible to extract the values for the coefficients \(c_1\) and \(c_2\).

In the case of the specific initial condition analyzed in Sect. 2 in which the system is prepared in the state of the logical basis corresponding to \(|\psi (0)\rangle =|0\rangle \), the coefficients are

$$\begin{aligned} \left\{ \begin{array}{ll} a(0)=1\\ b(0)=0.\\ \end{array} \right. \end{aligned}$$
(31)

After straightforward calculations we get the probability amplitudes

$$\begin{aligned} \left\{ \begin{array}{ll} a(t)=\frac{e^{i\alpha t}}{\beta }\left[ \beta \cos (\beta t) +i(A-\alpha )\sin (\beta t)\right] \\ b(t)=-ie^{i\alpha t}\frac{(A-\alpha )^2-\beta ^2}{\beta C} \sin (\beta t).\\ \end{array} \right. \end{aligned}$$
(32)

Appendix 3: Eigenvalues and eigenvectors of three exchange-coupled spins in two limiting cases of interest

In this appendix eigenvectors and eigenvalues of the hybrid qubit, described by the effective Hamiltonian (14), are presented in two special cases. Two limiting conditions of interest from the practical point of view, are analyzed.

  1. 1.

    Case \(J_2\gg J'\simeq J_1\) Under the condition on the exchange coupling \(J_2\gg J'\simeq J_1\), that means that two electron are confined in the right dot, eigenvectors and eigenvalues in Eqs. (23) and (24) become

    $$\begin{aligned} |D_{+\frac{1}{2}}\rangle&= \frac{1}{\sqrt{6}}\left( |\uparrow \uparrow \downarrow \rangle +|\uparrow \downarrow \uparrow \rangle -2|\downarrow \uparrow \uparrow \rangle \right) \nonumber \\ |D_{-\frac{1}{2}}\rangle&= \frac{1}{\sqrt{6}}\left( |\downarrow \downarrow \uparrow \rangle +|\downarrow \uparrow \downarrow \rangle -2|\uparrow \downarrow \downarrow \rangle \right) \nonumber \\ |D'_{+\frac{1}{2}}\rangle&= \frac{1}{\sqrt{2}}\left( |\uparrow \uparrow \downarrow \rangle -|\uparrow \downarrow \uparrow \rangle \right) \nonumber \\ |D'_{-\frac{1}{2}}\rangle&= \frac{1}{\sqrt{2}}\left( |\downarrow \downarrow \uparrow \rangle -|\downarrow \uparrow \downarrow \rangle \right) \end{aligned}$$
    (33)
    $$\begin{aligned} E_{D_{S_z}}&= \frac{1}{4}J_2\;E_{D'_{S_z}}=-\frac{3}{4}J_2. \end{aligned}$$
    (34)
  2. 2.

    Case \(J'\gg J_2\simeq J_1\) On the other hand, the opposite condition corresponding to two electrons confined in the left dot, that is \(J'\gg J_2\simeq J_1\), gives as eigenvectors and eigenvalues

    $$\begin{aligned} |\bar{D}_{+\frac{1}{2}}\rangle&= \frac{1}{\sqrt{6}}\left( |\downarrow \uparrow \uparrow \rangle +|\uparrow \downarrow \uparrow \rangle -2|\uparrow \uparrow \downarrow \rangle \right) \nonumber \\ |\bar{D}_{-\frac{1}{2}}\rangle&= \frac{1}{\sqrt{6}}\left( |\uparrow \downarrow \downarrow \rangle +|\downarrow \uparrow \downarrow \rangle -2|\downarrow \downarrow \uparrow \rangle \right) \nonumber \\ |\bar{D}'_{+\frac{1}{2}}\rangle&= \frac{1}{\sqrt{2}}\left( |\uparrow \downarrow \uparrow \rangle -|\downarrow \uparrow \uparrow \rangle \right) \nonumber \\ |\bar{D}'_{-\frac{1}{2}}\rangle&= \frac{1}{\sqrt{2}}\left( |\downarrow \uparrow \downarrow \rangle -|\uparrow \downarrow \downarrow \rangle \right) \end{aligned}$$
    (35)
    $$\begin{aligned} E_{\bar{D}_{S_z}}&= \frac{1}{4}J'\;E_{\bar{D}'_{S_z}}=-\frac{3}{4}J'. \end{aligned}$$
    (36)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraro, E., De Michielis, M., Mazzeo, G. et al. Effective Hamiltonian for the hybrid double quantum dot qubit. Quantum Inf Process 13, 1155–1173 (2014). https://doi.org/10.1007/s11128-013-0718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0718-2

Keywords

Navigation