Advertisement

Quantum Information Processing

, Volume 13, Issue 2, pp 185–199 | Cite as

Considering nearest neighbor constraints of quantum circuits at the reversible circuit level

  • Robert Wille
  • Aaron Lye
  • Rolf Drechsler
Article

Abstract

Since many underlying quantum algorithms include a Boolean component, synthesis of the respective circuits is often conducted by a two-stage procedure: First, a reversible circuit realizing the Boolean component is generated. Afterwards, this circuit is mapped into a respective quantum gate cascade. In addition, recent physical accomplishments have led to further issues to be considered, e.g. nearest neighbor constraints. However, due to the lack of proper metrics, these constraints usually have been addressed at the quantum circuit level only. In this paper, we present an approach that allows the consideration of nearest neighbor constraints already at the reversible circuit level. For this purpose, a recently introduced gate library is assumed for which a proper metric is proposed. By means of an optimization approach, the applicability of the proposed scheme is illustrated.

Keywords

Synthesis Reversible circuits Quantum circuits  Nearest neighbor 

Notes

Acknowledgments

The authors sincerely thank the reviewers for their thorough consideration of the manuscript and many comments that helped to improve this work.

References

  1. 1.
    Amini, J.M., Uys, H., Wesenberg, J.H., Seidelin, S., Britton, J., Bollinger, J.J., Leibfried, D., Ospelkaus, C., VanDevender, A.P., Wineland, D.J.: Toward scalable ion traps for quantum information processing. New J. Phys. 12(3), 033,031 (2010) http://stacks.iop.org/1367-2630/12/i=3/a=033031 Google Scholar
  2. 2.
    Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Am. Phys. Soc. 52, 3457–3467 (1995)Google Scholar
  3. 3.
    Chakrabarti, A., Sur-Kolay, S., Chaudhury, A.: Linear nearest neighbor synthesis of reversible circuits by graph partitioning. CoRR (2011)Google Scholar
  4. 4.
    Chakrabarti, A., Sur-Kolay, S.: Nearest neighbour based synthesis of quantum boolean circuits. Eng. Lett. 15, 356–361 (2007)Google Scholar
  5. 5.
    Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L., Munro, W.J., Nemoto, K.: Architectural design for a topological cluster state quantum computer. New J. Phys. 11(8), 083,032 (2009) http://stacks.iop.org/1367-2630/11/i=8/a=083032
  6. 6.
    DiVincenzo, D.P., Solgun, F.: Multi-qubit parity measurement in circuit quantum electrodynamics. New J. Phys. 15(7), 075,001 (2013). http://stacks.iop.org/1367-2630/15/i=7/a=075001
  7. 7.
    Dürr, C., Heiligman, M., Hoyer, P., Mhalla, M.: Quantum query complexity of some graph problems. SIAM J. Comput. 35, 1310–1328 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fredkin, E.F., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3/4), 219–253 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory of Computing, pp. 212–219 (1996)Google Scholar
  10. 10.
    Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., al kar, D.C., Chwalla, M., Körber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)CrossRefADSGoogle Scholar
  11. 11.
    Herrera-Marti, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic implementation for the topological cluster-state quantum computer. Phys. Rev. A 82, 032,332 (2010). doi: 10.1103/PhysRevA.82.032332 CrossRefGoogle Scholar
  12. 12.
    Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In: International Conference on Quantum, Nano and Micro Technologies, pp. 26–33. IEEE Computer Society, Washington, DC, USA (2009). doi: 10.1109/ICQNM.2009.25
  13. 13.
    Hollenberg, L.C.L., Greentree, A.D., Fowler, A.G., Wellard, C.J.: Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045,311 (2006). doi: 10.1103/PhysRevB.74.045311 CrossRefGoogle Scholar
  14. 14.
    Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2, 031,007 (2012). doi: 10.1103/PhysRevX.2.031007 Google Scholar
  15. 15.
    Kane, B.: A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)CrossRefADSGoogle Scholar
  16. 16.
    Khan, M.H.A.: Cost reduction in nearest neighbour based synthesis of quantum boolean circuits. Eng. Lett. 16, 1–5 (2008)ADSGoogle Scholar
  17. 17.
    Kumph, M., Brownnutt, M., Blatt, R.: Two-dimensional arrays of radio-frequency ion traps with addressable interactions. New J. Phys. 13(7), 073,043 (2011). http://stacks.iop.org/1367-2630/13/i=7/a=073043
  18. 18.
    Laforest, M., Simon, D., Boileau, J.C., Baugh, J., Ditty, M., Laflamme, R.: Using error correction to determine the noise model. Phys. Rev. A 75, 133–137 (2007)CrossRefGoogle Scholar
  19. 19.
    Maslov, D., Young, C., Dueck, G.W., Miller, D.M.: Quantum circuit simplification using templates. In: Design, Automation and Test in Europe, pp. 1208–1213 (2005)Google Scholar
  20. 20.
    Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, pp. 318–323 (2003)Google Scholar
  21. 21.
    Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control toffolli gates. In: International Symposium on Multi-Valued Logic, pp. 288–293 (2011)Google Scholar
  22. 22.
    Mottonen, M., Vartiainen, J.J.: Decompositions of general quantum gates. Ch. 7 in Trends in Quantum Computing Research, NOVA Publishers, New York (2006). http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/05%04100
  23. 23.
    Muthukrishnan, A., Stroud, C.R.: Multivalued logic gates for quantum computation. Phys. Rev. A 62, 052,309 (2000)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat Commun. 4, 1756 (2013)CrossRefADSGoogle Scholar
  25. 25.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ Press, Cambridge (2000)zbMATHGoogle Scholar
  26. 26.
    Ohliger, M., Eisert, J.: Efficient measurement-based quantum computing with continuous-variable systems. Phys. Rev. A 85, 062,318 (2012). doi: 10.1103/PhysRevA.85.062318 Google Scholar
  27. 27.
    Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Saeedi, M., Sedighi, M., Zamani, M.S.: A novel synthesis algorithm for reversible circuits. In: International Conference on CAD, pp. 65–68 (2007)Google Scholar
  29. 29.
    Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process. 10(3), 355–377 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sasanian, Z., Miller, D.M.: Transforming MCT circuits to NCVW circuits. In: Reversible Computation 2011. Lecture Notes in Computer Science vol. 7165, pp. 77–88 (2012)Google Scholar
  31. 31.
    Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class of quantum gates. In: Design Automation Conference, pp. 36–41 (2012)Google Scholar
  32. 32.
    Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. CAD 22(6), 710–722 (2003)CrossRefGoogle Scholar
  33. 33.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Found. Comput. Sci. pp. 124–134 (1994)Google Scholar
  34. 34.
    Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: An Open Source Toolkit for the Design of Reversible Circuits. In: Reversible Computation 2011, Lecture Notes in Computer Science, vol. 7165, pp. 64–76 (2012). RevKit is available at www.revkit.org
  35. 35.
    Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: ASP Design Automation Conference, pp. 85–92 (2012)Google Scholar
  36. 36.
    Toffoli, T.: Reversible computing. In: de Bakker, W., van Leeuwen, J. (eds.) Automata, Languages and Programming, p. 632. Springer, Technical Memo MIT/LCS/TM-151. MIT Lab. for Comput, Sci (1980)Google Scholar
  37. 37.
    Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conference, pp. 270–275 (2009)Google Scholar
  38. 38.
    Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: International Symposium on Multi-Valued Logic, pp. 220–225 (2008). RevLib is available at http://www.revlib.org
  39. 39.
    Wille, R., Offermann, S., Drechsler, R.: SyReC: a programming language for synthesis of reversible circuits. In: Forum on Specification and Design Languages, pp. 184–189 (2010)Google Scholar
  40. 40.
    Yao, N.Y., Gong, Z.X., Laumann, C.R., Bennett, S.D., Duan, L.M., Lukin, M.D., Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys. Rev. A 87, 022,306 (2013). doi: 10.1103/PhysRevA.87.022306 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University of Bremen and DFKI BremenBremenGermany
  2. 2.University of BremenBremenGermany

Personalised recommendations