Abstract
A scheme is proposed to deterministically generate a two atoms entangled state and a multiple atoms W state in two coupled cavities by one step. In the scheme, the populations of cavities and atoms excited are negligible under certain conditions with an adiabatic passage along a dark state. Furthermore, the interaction time needs not to be controlled exactly and keeps unchanged with the increasing of the number of qubits. In consideration that only one of the atoms needs to be operated, the realization in experiment can be relatively easier.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics (Long Island City, NY) 1, 195–200 (1965)
Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1142 (1990)
Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)
Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303(1–4) (2005)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153–2156 (1997)
Lo, H.K., Popesu, S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63, 022301(1–16) (2001)
Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314(1–12) (2000)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)
Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314(1–11) (2002)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)
Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)
Turchette, Q.A., Wood, C.S., King, B.E., Myatt, C.J., Leibfried, D., Itano, W.M., Moroe, C., Wineland, D.J.: Deterministic entanglememt of two trapped ions. Phys. Rev. Lett. 81, 3631–3634 (1998)
Liu, J.M., Wang, Y.Z.: Remote preparation of a two-particle entangled state. Phys. Lett. A 316, 159–167 (2003)
Hagley, E., Maitre, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J.M., Haroche, S.: Generation of Einstein–Podolsky–Rosen pairs of atoms. Phys. Rev. Lett. 79, 1–5 (1997)
Osnaghi, S., Bertet, P., Auffieves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902(1–4) (2001)
Rauschenbeutel, A., Bertet, P., Osnaghi, S., Nogues, G., Btune, M., Raimond, J.M., Haroche, S.: Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment. Phys. Rev. A 64, 050301(R)(1–4) (2001)
Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)
Zheng, S.B.: Scalable generation of multi-atom W states with a single resonant interaction. J. Opt. B Quantum Semiclass. Opt. 7, 10–13 (2005)
Chen, R.X., Shen, L.T.: Tripartite entanglement of atoms trapped in coupled cavities via quantum Zeno dynamics. Phy. Lett. A 375, 3840–3844 (2011)
Law, C.K., Eberly, J.H.: Arbitrary control of a quantum electromagetic field. Phys. Rev. Lett. 76, 1055–1058 (1996)
Kuhn, A., Hennrich, M., Bondo, T., Rempe, G.: Controlled generation of single photons from a strongly coupled atom–cavity system. Appl. Phys. B 69, 373–377 (1999)
Zheng, S.B.: Nongeomentric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation. Phys. Rev. Lett. 95, 080502(1–4) (2005)
Song, J., Xia, Y., Song, H.S.: Entangled state generation via adiabatic passage in two distant cavities. J. Phys. B Atom Mol. Opt. Phys. 40, 4503–4511 (2007)
Yang, R.C., Li, G., Zhang, T.C.: Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics. Quantum Inf. Process. 12, 493–504 (2012)
Armani, D.K., Kippenberg, T.J., Spillane, S.M., Vahala, K.J.: Ultra-high-Q toroid microcavity on a chip. Nature (London) 421, 925–928 (2003)
Bayindir, M., Temelkuran, B., Ozbay, E.: Tight-binding description of the coupled defect modes in three-dimensional photonic crystals. Phys. Rev. Lett. 84, 2140–2143 (2000)
Wallraff, A., Schuster, D.L., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 431, 162–167 (2004)
Ogden, C.D., Irish, E.K., Kim, M.S.: Dynamics in a coupled-cavity array. Phys. Rev. A 78, 063805(1–9) (2008)
Zhong, Z.R., Lin, X., Zhang, B., Yang, Z.B.: Deterministic multi-atom GHZ states generation in a coupled cavity system with the assistance of strong classical fields. Phys. Scr. 86, 055008(1–4) (2012)
Song, J., Xia, Y., Song, H.S.: One-step generation of cluster state by adiabatic passage in coupled cavities. Appl. Phys. Lett. 96, 071102(1–3) (2010)
Angelakis D.G., Kay, A.: Weaving light-matter qubits into a one way quantum computer. New J. Phys. 10, 023012(1–10) (2008)
Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Effective spin systems in coupled microcavities. Phys. Rev. Lett. 99, 160501(1–4) (2007)
Boes, S., Angelakis, D.G., Burgarth, D.: Transfer of a polaritonic qubit throught a coupled cavity array. J. Mod. Opt. 54, 2307–2314 (2007)
Kastoryano, M.J., Reiter, F., Sørensen, A.S.: Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502(1–4) (2011)
Lu, M., Xia, Y., Song, J., Song, H.S.: Driving three atoms into a singlet state in an optical cavity via adiabatic passage of a dark state. J. Phys. B Atom Mol. Opt. Phys. 46, 015502(1–6) (2013)
Hao, S.Y., Xia, Y., Song, J., An, N.B.: One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage. J. Opt. Soc. Am. B 30, 468–474 (2013)
Zheng, S.B.: Generation of Greenberger–Horne–Zeilinger states for multiple atoms trapped in separated cavities. Eur. Phys. J. D 54, 719–722 (2009)
Spollane, S.M., Kippenberg, T.J., Painter, O.J., Vahala, K.J.: Ideality in a fiber–taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902(1–4) (2003)
Spollane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817(1–10) (2005)
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant numbers 11047122 and 11105030, the Natural Science Foundation of Fuzhou University of China under Grant numbers XRC-0976 and 2010-XQ-28, the funds from Education Department of Fujian Province of China under Grant numbers JA11005, JA10009 and JA10039, the National Natural Science Foundation of Fujian Province of China under Grant numbers 2010J01006 and 2011J0101, the Foundation of Ministry of Education of China under Grant number 212085.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, YH., Xia, Y. & Song, J. Effective protocol for generation of multiple atoms entangled states in two coupled cavities via adiabatic passage. Quantum Inf Process 12, 3771–3783 (2013). https://doi.org/10.1007/s11128-013-0630-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0630-9