Improvements on “multiparty quantum key agreement with single particles”

Abstract

Recently, Liu et al. (Quantum Inf Process 12: 1797–1805, 2013) proposed a secure multiparty quantum key agreement (MQKA) protocol with single particles. Their protocol allows N parties to negotiate a secret session key in such away that (1) outside eavesdroppers cannot gain the session key without introducing any errors; (2) the session key cannot be determined by any non-trivial subset of the participants. However, the particle efficiency of their protocol is only \(\frac{1}{(k+1)N(N-1)}\). In this paper, we show that the efficiency of the MQKA protocol can be improved to \(\frac{1}{N(k+1)}\) by introducing two additional unitary operations. Since, in some scenarios, the secret keys are confidential, neither party is willing to divulge any of the contents to the other. Therefore, in our protocol, no participant can learn anything more than its prescribed output, i.e., the secret keys of the participants can be kept secret during the protocol instead of being exposed to others, thus, the privacy of the protocol is also improved. Furthermore, we explicitly show the scheme is secure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, pp. 175–179. Bangalore, India (1984)

  2. 2.

    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    MATH  MathSciNet  Article  ADS  Google Scholar 

  3. 3.

    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    MATH  MathSciNet  Article  ADS  Google Scholar 

  4. 4.

    Bin, L., Fei, G., Wei, H., Qiao Yan, W.: Multiparty quantum key agreement with single particles. Quantum Inf. Process 12(4), 1797–1805 (2013)

    MATH  MathSciNet  Article  ADS  Google Scholar 

  5. 5.

    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187,902 (2002)

    Article  Google Scholar 

  6. 6.

    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    MATH  Article  ADS  Google Scholar 

  7. 7.

    Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  8. 8.

    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A 68(4), 042,317 (2003)

    Article  Google Scholar 

  9. 9.

    Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012,311 (2004)

    Article  Google Scholar 

  10. 10.

    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052,319 (2004)

    Article  Google Scholar 

  11. 11.

    Deng, F.G., Li, X.H., Zhou, H.Y.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72, 044,302 (2005)

    Article  Google Scholar 

  12. 12.

    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    MATH  MathSciNet  Article  ADS  Google Scholar 

  14. 14.

    Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75(7), 1239–1243 (1995)

    MATH  MathSciNet  Article  ADS  Google Scholar 

  15. 15.

    Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042,311 (2000)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing pp. 212–219 (1996).

  17. 17.

    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    MathSciNet  Article  ADS  Google Scholar 

  18. 18.

    Hsin Yi, T., Jason, L., Tzonelih, H.: New quantum private comparison protocol using epr pairs. Quantum Inf. Process 11(2), 373–384 (2012)

    MATH  MathSciNet  Article  Google Scholar 

  19. 19.

    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057,901 (2003)

    Article  Google Scholar 

  20. 20.

    Ingemarsson, I., Tang, D., Wong, C.: A conference key distribution system. IEEE Trans. Inf. Theory 28(5), 714–719 (1982)

    MATH  MathSciNet  Article  Google Scholar 

  21. 21.

    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  22. 22.

    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054,302 (2006)

    Article  Google Scholar 

  23. 23.

    Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12(1), 685–697 (2013)

    MATH  MathSciNet  Article  ADS  Google Scholar 

  24. 24.

    Lin, J., Yang, C.W., Tsai, C.W., Hwang, T.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)

    MATH  MathSciNet  Article  Google Scholar 

  25. 25.

    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032,302 (2002)

    Article  Google Scholar 

  26. 26.

    Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process 12(2), 921–932 (2013)

    MATH  MathSciNet  Article  ADS  Google Scholar 

  27. 27.

    Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science pp. 124–134 (1994)

  28. 28.

    Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  29. 29.

    Song Kong, C., Tzonelih, H.: Quantum key agreement protocol based on bb84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  30. 30.

    Song Kong, C., Chia Wei, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    MATH  Article  Google Scholar 

  31. 31.

    Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 452(1954), 2551–2577 (1996)

    MATH  MathSciNet  Article  ADS  Google Scholar 

  32. 32.

    Sun, Z.W., Du, R.G., Long, D.Y.: Efficient quantum secure direct communication with quantum identification. Int. J. Quantum Inf. 10, 1250,008 (2012)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51, 1946–1952 (2012)

    MATH  MathSciNet  Article  Google Scholar 

  34. 34.

    Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)

    MATH  MathSciNet  Article  Google Scholar 

  35. 35.

    Tsai, C., Hwang, T.: On quantumkeyagreementprotocol. Technical Report, C-S-I-E, NCKU, Taiwan, ROC (2009)

  36. 36.

    Wen, L., Yong Bin, W., Zheng Tao, J.: An efficient protocol for the quantum private comparison of equality with w state. Opt. Commun. 284(12), 3160–3165 (2011)

    Article  ADS  Google Scholar 

  37. 37.

    Xiu Bo, C., Gang, X., Xin Xin, N., Qiao Yan, W., Yi Xian, Y.: An efficient protocol for the privatecomparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  38. 38.

    Yu Guang, Y., Qiao Yan, W.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055,305 (2009)

    Article  Google Scholar 

  39. 39.

    Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044,301 (2005)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous referees for very useful comments. This work is supported by the National Natural Science Foundation of China (No. 61272013) and the Key Project of NSFC-Guangdong Funds (No. U0935002). The work of Qin Li is supported by National Natural Science Foundation of China (Grant No. 61202398) and Hunan Provincial Education Department (Grant No. 12C0400 ).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Sun.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, Z., Zhang, C., Wang, B. et al. Improvements on “multiparty quantum key agreement with single particles”. Quantum Inf Process 12, 3411–3420 (2013). https://doi.org/10.1007/s11128-013-0608-7

Download citation

Keywords

  • Quantum key agreement
  • Quantum cryptography
  • Quantum information