Skip to main content
Log in

Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider a weak measurement reversal proposal to recover quantum correlations of two-qubit system under local amplitude damping channels. With weak measurement reversal, we show that quantum correlations do not vanish but preserve a finite value in the limit of the noise strength \(p\rightarrow 1\), which can be attributed to the probabilistic nature of this method. The experimental feasibility of this approach is also discussed in pure optical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambrige University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Masanes, L., Pironio, S., Acin, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun. 2, 238 (2011)

    Article  ADS  Google Scholar 

  4. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  5. Li, X.Y., Pan, Q., Jing, J.T., Zhang, J., Xie, C.D., Peng, K.C.: Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  6. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672–5675 (1998)

    Article  ADS  Google Scholar 

  7. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  8. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  9. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Ollivier, H., Zurek, W.H.: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  11. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  12. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  13. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Almeida, M.P., et al.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  15. Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  16. The weak measurements involved in our discussions are POVM which are different with the post-selected weak measurement proposed by Aharonov et al. in Phys. Rev. Lett. 60, 1351 (1988)

  17. Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737–5742 (1999)

    Article  ADS  Google Scholar 

  18. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  19. Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  20. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  21. Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)

    Article  ADS  Google Scholar 

  22. Sun, Q.Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  23. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  24. Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  25. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)

    Article  ADS  Google Scholar 

  26. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  27. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  28. Popescu, S.: Bells inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797–799 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  30. Zhang, Y.S., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental preparation of the Werner state via spontaneous parametric down-conversion. Phys. Rev. A 66, 062315 (2002)

    Article  ADS  Google Scholar 

  31. Barbieri, M., Martini, F.D., Nepi, G.D., Mataloni, P.: DAriano, G.M., Macchiavello, C.: Detection of entanglement with polarized photons: experimental realization of an entanglement witness. Phys. Rev. Lett. 91, 227901 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Z.Y. Xu for his warmhearted help. This work is supported by the Special Funds of the National Natural Science Foundation of China under Grant Nos. 11247006 and 11247207, and by Scientic Research Foundation of Jiangxi Provincial Education Department under Grants No. GJJ12355 and by Natural Science Foundation of Jiangxi under Grants No. 20122BAB212004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YL., Xiao, X. Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf Process 12, 3067–3077 (2013). https://doi.org/10.1007/s11128-013-0585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0585-x

Keywords

Navigation